A porous molecularly imprinted nanofilm for selective and sensitive sensing of an anticancer drug ruxolitinib

[ X ]

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

A novel methodology has been applied to generate a porous molecularly imprinted material for highly selective and sensitive recognition of Janus kinase inhibitor ruxolitinib (RUX). The porous material-based nucleobase-derivative functional monomer was developed by a photopolymerization method. The thymine methacrylate (ThyM) as a functional monomer was synthesized and copolymerized with 2hydroxyethyl methacrylate (HEMA) in the presence of ethylene glycol dimethacrylate (EGDMA) onto the glassy carbon electrode [glassy carbon electrode/molecularly imprinted polymer@poly(2hydroxyethyl methacrylate-co-thymine methacrylate), (GCE/MIP@PHEMA-ThyM)] for the first time. The presence of ThyM results in the functional groups in imprinting binding sites, while the presence of poly(vinyl alcohol) (PVA) allows to generate porous materials for sensitive sensing. The characterization of GCE/MIP@PHEMA-ThyM was investigated by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and impedance spectroscopy technique. Then, the porous MIP modified glassy carbon electrode was optimized with effecting parameters including removal agent, removal time, and incubation time to get a better response for RUX. Under well-controlled optimum conditions, the GCE/MIP@PHEMA-ThyM linearly responded to the RUX concentration up to 0.01 pM at the limit of detection (LOD) of 0.00191 pM. The non-imprinted polymer (NIP) was also prepared to serve as a control in the same way but without the template. The proposed method improves the accessibility of binding sites by generating the porous material resulting in highly selective and sensitive recognition of drugs in the pharmaceutical dosage form and synthetic human serum samples. (c) 2021 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Ruxolitinib, Molecularly imprinted polymer, Photopolymerization, Voltammetry, Drug analysis

Kaynak

Analytica Chimica Acta

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

1187

Sayı

Künye