Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane
dc.authorid | Manna, Joydev/0000-0002-1399-1195 | |
dc.authorid | Akbayrak, Serdar/0000-0003-3858-2985 | |
dc.authorid | Ozkar, Saim/0000-0002-6302-1429 | |
dc.contributor.author | Manna, Joydev | |
dc.contributor.author | Akbayrak, Serdar | |
dc.contributor.author | Ozkar, Saim | |
dc.date.accessioned | 2025-03-23T19:41:17Z | |
dc.date.available | 2025-03-23T19:41:17Z | |
dc.date.issued | 2017 | |
dc.department | Sinop Üniversitesi | |
dc.description.abstract | Nickel(0) nanoparticles supported on cobalt ferrite (Ni-0/CoFe2O4), polydopamine coated cobalt ferrite (NP0/PDA-CoFe2O4) or silica coated cobalt ferrite (NP0/SiO2-CoFe2O4) are prepared and used as catalysts in hydrogen generation from the hydrolysis of ammonia borane at room temperature. Ni-0/CoFe2O4 (4.0% wt. Ni) shows the highest catalytic activity with a TOF value of 38.3 min(-1) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 +/- 0.1 degrees C. However, the initial catalytic activity of Ni-0/NCoFe204 catalyst is not preserved in subsequent runs of hydrolysis. Coating the surface of cobalt ferrite support with polydopamine or silica leads to a significant improvement in the stability of catalysts. The TOF values of Ni-0/PDA-CoFe2O4 and Ni-0/(2)-CoFe2O4 are found to be 7.6 and 5.3 min(-1), respectively, at 25.0 +/- 0.1 degrees C. Ni-0/PDA-CoFe2O4 catalyst shows high reusability as compared to the Ni-0/CoFe2O4 and NP0/SiO2-CoFe2O4 catalysts in hydrolytic dehydrogenation of ammonia borane at room temperature. All the catalysts are characterized by using a combination of various advanced analytical techniques. The results reveal that nickel nanoparticles with an average size of 12.3 +/- 0.7 nm are well dispersed on the surface of PDA-CoFe2O4. (C) 2017 Elsevier Inc. All rights reserved. | |
dc.description.sponsorship | Turkish Academy of Sciences; Scientific and Technological Research Council of Turkey (TUBITAK) [2216] | |
dc.description.sponsorship | Partial support by Turkish Academy of Sciences is acknowledged. JM is thankful to Scientific and Technological Research Council of Turkey (TUBITAK) for the fellowship (Research Fellowship Program 2216 for International Researchers). We thank to the METU Central Lab (Ankara/Turkey) for the TEM, XPS, ICP-OES, and BET analyses. | |
dc.identifier.doi | 10.1016/j.jcis.2017.08.045 | |
dc.identifier.endpage | 368 | |
dc.identifier.issn | 0021-9797 | |
dc.identifier.issn | 1095-7103 | |
dc.identifier.pmid | 28843925 | |
dc.identifier.scopus | 2-s2.0-85028002576 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 359 | |
dc.identifier.uri | https://doi.org/10.1016/j.jcis.2017.08.045 | |
dc.identifier.uri | https://hdl.handle.net/11486/6544 | |
dc.identifier.volume | 508 | |
dc.identifier.wos | WOS:000412152500040 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | PubMed | |
dc.language.iso | en | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.relation.ispartof | Journal of Colloid and Interface Science | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_WOS_20250323 | |
dc.subject | Nickel(0) nanoparticles | |
dc.subject | Ammonia borane | |
dc.subject | Magnetic support | |
dc.subject | Cobalt ferrite | |
dc.subject | Polydopamine/silica coating | |
dc.title | Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane | |
dc.type | Article |