Approximation for periodic functions via statistical ?-convergence

dc.contributor.authorDemirci, Kamil
dc.contributor.authorDirik, Fadime
dc.date.accessioned2015-04-06T13:12:25Z
dc.date.available2015-04-06T13:12:25Z
dc.date.issued2011
dc.description.abstractIn this study, using the concept of statistical ?-convergence which is stronger than convergence and statistical convergence we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on $C^{\ast }$ which is the space of all $2\pi $-periodic and continuous functions on $\mathbb{R}$, the set of all real numbers. We also study the rates of statistical ?-convergence of approximating positive linear operators.
dc.identifier.citationDemirci, K., Dirik, F., "Approximation for periodic functions via statistical ?-convergence", Mathematical Communications, 16 (2011), 77-84.
dc.identifier.issn1848-8013 (Online)
dc.identifier.issn1331-0623 (Print)
dc.identifier.scopus2-s2.0-79959386493
dc.identifier.urihttp://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=102468
dc.identifier.urihttps://hdl.handle.net/11486/898
dc.identifier.wosWOS:000291427800007
dc.language.isoen
dc.publisherMathematical Communications
dc.relation.publicationcategoryMakale - Kategorisiz
dc.subjectStatistical convergence
dc.subjectStatistical ?-convergence
dc.subjectPositive linear operator
dc.subjectKorovkin-type approximation theorem
dc.subjectPeriodic functions
dc.subjectFejer polynomials
dc.titleApproximation for periodic functions via statistical ?-convergence
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Approximation for periodic functions via statistical σ-convergence.pdf
Boyut:
208.33 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: