Approximation for periodic functions via statistical ?-convergence

Yükleniyor...
Küçük Resim

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mathematical Communications

Erişim Hakkı

Özet

In this study, using the concept of statistical ?-convergence which is stronger than convergence and statistical convergence we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on $C^{\ast }$ which is the space of all $2\pi $-periodic and continuous functions on $\mathbb{R}$, the set of all real numbers. We also study the rates of statistical ?-convergence of approximating positive linear operators.

Açıklama

Anahtar Kelimeler

Statistical convergence, Statistical ?-convergence, Positive linear operator, Korovkin-type approximation theorem, Periodic functions, Fejer polynomials

Kaynak

WoS Q DeÄŸeri

Scopus Q DeÄŸeri

Cilt

Sayı

Künye

Demirci, K., Dirik, F., "Approximation for periodic functions via statistical ?-convergence", Mathematical Communications, 16 (2011), 77-84.