Approximation for periodic functions via statistical ?-convergence
Yükleniyor...
Tarih
2011
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Mathematical Communications
Erişim Hakkı
Özet
In this study, using the concept of statistical ?-convergence which is stronger than convergence and statistical convergence we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on $C^{\ast }$ which is the space of all $2\pi $-periodic and continuous functions on $\mathbb{R}$, the set of all real numbers. We also study the rates of statistical ?-convergence of approximating positive linear operators.
Açıklama
Anahtar Kelimeler
Statistical convergence, Statistical ?-convergence, Positive linear operator, Korovkin-type approximation theorem, Periodic functions, Fejer polynomials
Kaynak
WoS Q DeÄŸeri
Scopus Q DeÄŸeri
Cilt
Sayı
Künye
Demirci, K., Dirik, F., "Approximation for periodic functions via statistical ?-convergence", Mathematical Communications, 16 (2011), 77-84.