Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations

dc.authoridCimen, Erkan/0000-0002-7258-192X
dc.contributor.authorAmirali, I.
dc.contributor.authorAmiraliyev, G. M.
dc.contributor.authorCakir, M.
dc.contributor.authorCimen, E.
dc.date.accessioned2025-03-23T19:31:00Z
dc.date.available2025-03-23T19:31:00Z
dc.date.issued2014
dc.departmentSinop Üniversitesi
dc.description.abstractFinite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown.
dc.identifier.doi10.1155/2014/497393
dc.identifier.issn1537-744X
dc.identifier.pmid24688392
dc.identifier.scopus2-s2.0-84896806684
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1155/2014/497393
dc.identifier.urihttps://hdl.handle.net/11486/5188
dc.identifier.wosWOS:000331316700001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherHindawi Publishing Corporation
dc.relation.ispartofScientific World Journal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250323
dc.subjectSobolev Equations
dc.titleExplicit Finite Difference Methods for the Delay Pseudoparabolic Equations
dc.typeArticle

Dosyalar