Predicting bus travel time using machine learning methods with three-layer architecture

[ X ]

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The increase in population and the crowding of cities bring along transportation problems. Thus, people are directed to public transportation to reduce the burden on transportation. Being informed correctly about the arrival time at the stops attracts passengers. In this study, machine learning methods with three-layer architecture were used to predict bus arrival time. The first layer processes the measured data and gives the prediction results of actual data. In the second layer, the residuals are predicted at the specified depth. In the third layer, the results of the previous two layers are integrated with three different approaches to calculate the final prediction. The case study was carried out on the data obtained from Istanbul public transportation and various machine learning methods were applied to the data using the traditional and the three-layer architecture. The experimental results showed that the three-layer architecture provided successful results with approximately 2.552 MAPE.

Açıklama

Anahtar Kelimeler

Bus arrival time, Machine learning, Time series, Prediction, Public transportation

Kaynak

Measurement

WoS Q Değeri

Q1

Scopus Q Değeri

Q3

Cilt

198

Sayı

Künye