Fabrication of Plasmonic Nanorod-Embedded Dipeptide Microspheres via the Freeze-Quenching Method for Near-Infrared Laser-Triggered Drug-Delivery Applications

dc.authoridDemirel, Gokhan/0000-0002-9778-917X
dc.authoridERDOGAN, HAKAN/0000-0002-7791-7445
dc.authoridDuman, Memed/0000-0002-2616-6733
dc.authoridyilmaz, mehmet/0000-0003-2687-9167
dc.contributor.authorErdogan, Hakan
dc.contributor.authorYilmaz, Mehmet
dc.contributor.authorBabur, Esra
dc.contributor.authorDuman, Memed
dc.contributor.authorAydin, Halil M.
dc.contributor.authorDemirel, Gokhan
dc.date.accessioned2025-03-23T19:35:53Z
dc.date.available2025-03-23T19:35:53Z
dc.date.issued2016
dc.departmentSinop Üniversitesi
dc.description.abstractControl of drug release by an external stimulus may provide remote controllability, low toxicity, and reduced side effects. In this context, varying physical external stimuli, including magnetic and electric fields, ultrasound, light, and pharmacological stimuli, have been employed to control the release rate of drug molecules in a diseased region. However, the design and development of alternative on-demand drug-delivery systems that permit control of the dosage of drug released via an external stimulus are still required. Here, we developed near-infrared laser-activatable microspheres based on Fmoc-diphenylalanine (Phe-Phe) dipeptides and plasmonic gold nanorods (AuNRs) via a simple freeze-quenching approach. These plasmonic nanoparticle-embedded microspheres were then employed as a smart drug-delivery platform for native, continuous, and pulsatile doxorubicin (DOX) release. Remarkable sustained, burst, and on-demand DOX release from the fabricated microspheres were achieved by manipulating the laser exposure time. Our results demonstrate that AuNR-embedded dipeptide microspheres have great potential for controlled drug delivery systems.
dc.description.sponsorshipTUBITAK [111M237]; Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA-GEBIP)
dc.description.sponsorshipThis work was supported by TUBITAK (Grant Number 111M237). G.D. also acknowledges support from the Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA-GEBIP).
dc.identifier.doi10.1021/acs.biomac.6b00214
dc.identifier.endpage1794
dc.identifier.issn1525-7797
dc.identifier.issn1526-4602
dc.identifier.issue5
dc.identifier.pmid27064415
dc.identifier.scopus2-s2.0-84973615675
dc.identifier.scopusqualityQ1
dc.identifier.startpage1788
dc.identifier.urihttps://doi.org/10.1021/acs.biomac.6b00214
dc.identifier.urihttps://hdl.handle.net/11486/5958
dc.identifier.volume17
dc.identifier.wosWOS:000375886500024
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherAmer Chemical Soc
dc.relation.ispartofBiomacromolecules
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectDiphenylalanine Peptide
dc.subjectPlatform
dc.subjectOrganogels
dc.subjectHydrogels
dc.titleFabrication of Plasmonic Nanorod-Embedded Dipeptide Microspheres via the Freeze-Quenching Method for Near-Infrared Laser-Triggered Drug-Delivery Applications
dc.typeArticle

Dosyalar