Magnetically Isolable Pt0/Co3O4 Nanocatalysts: Outstanding Catalytic Activity and High Reusability in Hydrolytic Dehydrogenation of Ammonia Borane
[ X ]
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Amer Chemical Soc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The development of a new platinum nanocatalyst to maximize the catalytic efficiency of the precious noble metal catalyst in releasing hydrogen from ammonia borane (AB) is reported. Platinum(0) nanoparticles are impregnated on a reducible cobalt(II,III) oxide surface, forming magnetically isolable Pt-0/Co3O4 nanocatalysts, which have (i) superb catalytic activity providing a record turnover frequency (TOF) of 4366 min(-1) for hydrogen evolution from the hydrolysis of AB at room temperature and (ii) excellent reusability, retaining the complete catalytic activity even after the 10th run of hydrolysis reaction. The outstanding activity and stability of the catalyst can be ascribed to the strong interaction between the platinum(0) nanoparticles and reducible cobalt oxide, which is supported by the results of XPS analysis. Pt-0/Co3O4 exhibits the highest TOF among the reported platinum-nanocatalysts developed for hydrogen generation from the hydrolysis of AB.
Açıklama
Anahtar Kelimeler
platinum nanoparticles, cobalt(II,III) oxide, ammonia borane, catalysis, hydrogen release
Kaynak
Acs Applied Materials & Interfaces
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
13
Sayı
29