Approximation for periodic functions via statistical A-summability
dc.contributor.advisor | ||
dc.contributor.author | Demirci, Kamil | |
dc.contributor.author | Karakuş, Sevda | |
dc.date.accessioned | 2014-07-17T06:43:48Z | |
dc.date.available | 2014-07-17T06:43:48Z | |
dc.date.issued | 2012 | |
dc.description.abstract | In this paper, using the concept of statistical A-summability which is stronger than the A-statistical convergence, we prove a Korovkin type approxima-tion theorem for sequences of positive linear operator de ned on C (R) which is the space of all 2 -periodic and continuous functions on R, the set of all real numbers. We also compute the rates of statistical A-summability of sequence of positive linear operators. | |
dc.identifier.scopus | 2-s2.0-84866247977 | |
dc.identifier.uri | http://www.emis.de/journals/AMUC/_vol-81/_no_2/_karakus/karakus.pdf | |
dc.identifier.uri | https://hdl.handle.net/11486/254 | |
dc.identifier.wos | WOS:000434726300003 | |
dc.language.iso | en | |
dc.publisher | Acta Mathematica Universitatis Comenianae | |
dc.relation.publicationcategory | Makale - Kategorisiz | |
dc.subject | Statistical convergence; statistical A-summability; positive linear operator; Korovkin type approximation theorem; Fejer operators. | |
dc.title | Approximation for periodic functions via statistical A-summability | |
dc.type | Article |