Linearly implicit methods for the nonlinear Klein-Gordon equation

dc.authoridKarasozen, Bulent/0000-0003-1037-5431
dc.contributor.authorUzunca, Murat
dc.contributor.authorKarasozen, Bulent
dc.date.accessioned2025-03-23T19:40:56Z
dc.date.available2025-03-23T19:40:56Z
dc.date.issued2025
dc.departmentSinop Üniversitesi
dc.description.abstractWe present energy-preserving linearly implicit integrators for the nonlinear Klein-Gordon equation, based on the polarization of the polynomial functions. They are symmetric, second- order accurate in time and space, and unconditionally stable. Instead of solving a nonlinear algebraic equation at every time step, the linearly implicit integrators only require solving a linear system, which reduces the computational cost. We propose three types of linearly implicit integrators for the nonlinear Klein-Gordon equation, that preserve the modified, polarized invariants, ensuring the stability of the solutions in long-time integration. Numerical results confirm the theoretical convergence orders and preservation of the Hamiltonians that guarantee the stability of the solutions in long-time simulation.
dc.identifier.doi10.1016/j.matcom.2024.12.019
dc.identifier.endpage330
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.scopus2-s2.0-85213271319
dc.identifier.scopusqualityQ1
dc.identifier.startpage318
dc.identifier.urihttps://doi.org/10.1016/j.matcom.2024.12.019
dc.identifier.urihttps://hdl.handle.net/11486/6458
dc.identifier.volume231
dc.identifier.wosWOS:001403276700001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofMathematics and Computers in Simulation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectHamiltonian systems
dc.subjectLinearly implicit integrator
dc.subjectEnergy preservation
dc.subjectStability
dc.titleLinearly implicit methods for the nonlinear Klein-Gordon equation
dc.typeArticle

Dosyalar