On some properties of the spaces Awp(x)(R n)
dc.contributor.author | Aydin, Ismail | |
dc.contributor.author | Gürkanli, A. Turan | |
dc.date.accessioned | 2025-03-23T19:17:55Z | |
dc.date.available | 2025-03-23T19:17:55Z | |
dc.date.issued | 2009 | |
dc.department | Sinop Üniversitesi | |
dc.description.abstract | For 1 ≤ p < ∞, Ap (Rn) denotes the space of all complex-valued functions in L1 (Rn) whose Fourier transforms f̌ belong to Lp(Rn). A number of authors such as Larsen, Liu and Wang [12], Martin and Yap [14], Lai [11] worked on this space. Some generalizations to the weighted case was given by Gurkanli [7], Feichtinger and Gurkanli [4], Fischer, Gurkanli and Liu [5]. In the present paper we give another generalization of Ap (Rn) to the generalized Lebesgue space Lp(x)(Rn). We define A p(x)w (Rn) to be the space of all complex-valued functions in L1w (Rn) whose Fourier transforms f̌ belong to the generalized Lebesgue space L p(x)(Rn). We endow it with a sum norm and show that A p(x)w (Rn) is an Sw(Rn) space [2]. Further we discuss the multipliers of Ap(x)w (Rn). | |
dc.identifier.endpage | 155 | |
dc.identifier.issn | 1598-7264 | |
dc.identifier.issue | 2 | |
dc.identifier.scopus | 2-s2.0-70350325739 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 141 | |
dc.identifier.uri | https://hdl.handle.net/11486/4476 | |
dc.identifier.volume | 12 | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.relation.ispartof | Proceedings of the Jangjeon Mathematical Society | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_Scopus_20250323 | |
dc.title | On some properties of the spaces Awp(x)(R n) | |
dc.type | Conference Object |