On some properties of the spaces Awp(x)(R n)

[ X ]

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

For 1 ≤ p < ∞, Ap (Rn) denotes the space of all complex-valued functions in L1 (Rn) whose Fourier transforms f̌ belong to Lp(Rn). A number of authors such as Larsen, Liu and Wang [12], Martin and Yap [14], Lai [11] worked on this space. Some generalizations to the weighted case was given by Gurkanli [7], Feichtinger and Gurkanli [4], Fischer, Gurkanli and Liu [5]. In the present paper we give another generalization of Ap (Rn) to the generalized Lebesgue space Lp(x)(Rn). We define A p(x)w (Rn) to be the space of all complex-valued functions in L1w (Rn) whose Fourier transforms f̌ belong to the generalized Lebesgue space L p(x)(Rn). We endow it with a sum norm and show that A p(x)w (Rn) is an Sw(Rn) space [2]. Further we discuss the multipliers of Ap(x)w (Rn).

Açıklama

Anahtar Kelimeler

Kaynak

Proceedings of the Jangjeon Mathematical Society

WoS Q Değeri

Scopus Q Değeri

Q3

Cilt

12

Sayı

2

Künye