Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL
[ X ]
Tarih
2020
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Although nickel-based aerospace superalloys such as alloy 625 have superior properties including high-tensile and fatigue strength, corrosion resistance and good weldability, etc., its machinability is a difficult task which can be solved with alternative cooling/lubrication strategies. It is also important that these solution methods are sustainable. In order to facilitate the machinability of alloy 625 with sustainable techniques, we investigated the effect of minimum quantity lubrication (MQL), cryogenic cooling with liquid nitrogen (LN2) and hybrid-CryoMQL methods on tool wear behavior, cutting temperature, surface roughness/topography and chip morphology in a turning operation. The experiments were performed at three cutting speeds (50, 75 and 100 mirnin), fixed cutting depth (0.5 mm) and feed rate (0.12 mm/rev). As a result, CryoMQL improved surface roughness (1.42 mu m) by 24.82% compared to cryogenic cooling. The medium level of cutting speed (75 mirnin) can be preferred for the lowest roughness value and lowest peak-to-valley height when turning of alloy 625. Further, tool wear is decreased by 50.67% and 79.60% by the use of MQL and CryoMQL compared with cryogenic machining. An interesting result that MQL is more effective than cryogenic machining in reducing cutting tool wear. (C) 2019 The Authors. Published by Elsevier B.V.
Açıklama
Anahtar Kelimeler
Hybrid cooling/lubrication, Tool wear, Surface topography, Chip morphology, Ni-based aerospace alloy
Kaynak
Journal of Materials Research and Technology-Jmr&T
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
9
Sayı
2