Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms

dc.authoridKARAAGAC, Mehmet Onur/0000-0003-1783-9702
dc.contributor.authorKaraagac, Mehmet Onur
dc.contributor.authorErgun, Alper
dc.contributor.authorAgbulut, Umit
dc.contributor.authorGurel, Ali Etem
dc.contributor.authorCeylan, Ilhan
dc.date.accessioned2025-03-23T19:37:52Z
dc.date.available2025-03-23T19:37:52Z
dc.date.issued2021
dc.departmentSinop Üniversitesi
dc.description.abstractIn this paper, a concentrated photovoltaic-thermal solar dryer (CPV/TSD) using nano-enhanced PCM (Al2O3Paraffin wax) is experimentally studied. A comprehensive thermodynamic analysis of the system according to the first and second laws is discussed. Besides, the drying parameters (moisture content and moisture ratio) are predicted using the two machine learning algorithms (ANN and SVM) and compared the prediction success with four evaluation metrics (R2, rRMSE, MBE, and rMAE). The overall thermal energy efficiency and exergy efficiency of the CPV/TSD system are found to be 20% and 8%, respectively. Although solar radiation to the environment has decreased a lot, it has been found that the thermal energy transferred to the nano-enhanced PCM prevents the decrease in greenhouse temperature for the first 100 min. In the system, mushrooms are dried from the initial moisture content of 17.45 g water/g dry matter to the final moisture content of 0.0515 g water/g dry matter. Then the drying rate value for CPV/TSD system is calculated to be 0.436 g matter/g dry matter.min. On the other hand, even if both ANN and SVM algorithms have exhibited very satisfying results, ANN is coming to the fore in the prediction of the drying parameters considering all evaluation metrics together.
dc.identifier.doi10.1016/j.solener.2021.02.028
dc.identifier.endpage67
dc.identifier.issn0038-092X
dc.identifier.issn1471-1257
dc.identifier.scopus2-s2.0-85102023951
dc.identifier.scopusqualityQ1
dc.identifier.startpage57
dc.identifier.urihttps://doi.org/10.1016/j.solener.2021.02.028
dc.identifier.urihttps://hdl.handle.net/11486/6033
dc.identifier.volume218
dc.identifier.wosWOS:000637191800006
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofSolar Energy
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectSolar Drying
dc.subjectParaffin wax
dc.subjectNanoparticle
dc.subjectThermal energy storage
dc.subjectNano-enhanced PCM
dc.subjectPrediction algorihtms
dc.titleExperimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms
dc.typeArticle

Dosyalar