New analytical expressions, symmetry relations and numerical solutions for the rotational overlap integrals

dc.authoridEryilmaz, Serpil/0000-0002-0935-4644
dc.authoridAkdemir, Selda/0000-0002-5487-8703
dc.contributor.authorAkdemir, S. O.
dc.contributor.authorEryilmaz, S. D.
dc.contributor.authorOztekin, E.
dc.date.accessioned2025-03-23T19:47:07Z
dc.date.available2025-03-23T19:47:07Z
dc.date.issued2012
dc.departmentSinop Üniversitesi
dc.description.abstractIn this article, extremely simple analytical formulas are obtained for rotational overlap integrals which occur in integrals over two reduced rotation matrix elements. The analytical derivations are based on the properties of the Jacobi polynomials and beta functions. Numerical results and special values for rotational overlap integrals are obtained by using symmetry properties and recurrence relationships for reduced rotation matrix elements. The final results are of surprisingly simple structures and very useful for practical applications. (c) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
dc.identifier.doi10.1002/qua.23158
dc.identifier.endpage1591
dc.identifier.issn0020-7608
dc.identifier.issn1097-461X
dc.identifier.issue6
dc.identifier.scopus2-s2.0-84856708076
dc.identifier.scopusqualityQ2
dc.identifier.startpage1585
dc.identifier.urihttps://doi.org/10.1002/qua.23158
dc.identifier.urihttps://hdl.handle.net/11486/7285
dc.identifier.volume112
dc.identifier.wosWOS:000299781200006
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofInternational Journal of Quantum Chemistry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectrotational overlap integrals
dc.subjectreduced rotation matrix elements
dc.subjectJacobi polynomials
dc.titleNew analytical expressions, symmetry relations and numerical solutions for the rotational overlap integrals
dc.typeArticle

Dosyalar