Solvothermal synthesis, crystal structure, thermal, magnetic properties and DFT computations of a Ytterbium(III) complex derived from pyridine-2,6-dicarboxylic acid
[ X ]
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
A new ytterbium(III) complex, (DMAH(2))(3)[Yb(Pydc)(3)].4H(2)O (1) {Pydc = Pyridine-2,6-dicarboxylate anion, DMAH(2) = Dimethylammonium} has been prepared under mild solvothermal conditions and character-ized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. The DMAH2 molecules in 1 , generated in situ from hydrolysis of N,N-dimethylformamide are responsible to assemble 2D coordination polymer through N-H center dot center dot center dot O and O-H center dot center dot center dot O h ydrogen bonding. Magnetic suscepti-bility measurements indicate that the complex ( 1 ) obeys the Curie Weiss law and the overall magnetic behavior is typical for the presence of weak antiferromagnetic exchange coupling interactions. Theoretical data for geometrical parameters of complex 1 agree well with the experimental data. Large HOMO-LUMO energy gap of 4.33 eV has provided kinetic stability to the complex 1 . NBO analysis reflects that in-tramolecular charge transfer occurred between ligand and metal orbitals with the highest stabilization energy of 1024.04 kcal/mol. The negative electrostatic potential at the nitrogen and dianionic pyridine-2,6-dicarboxylate regions confirms that these are dynamic locations for Yb(III) binding. (c) 2022 Elsevier B.V. All rights reserved.
Açıklama
Anahtar Kelimeler
Ytterbium(III), Pyridine-26-dicarboxylic acid, In situ molecules, Magnetic properties, DFT computation
Kaynak
Journal of Molecular Structure
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
1260