Enhanced electrochemical performance of cerium-based metal organic frameworks derived from pyridine-2,4,6-tricarboxylic acid for energy storage devices
[ X ]
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Modern era demands development of hybrid supercapacitor amalgamating characteristics of battery and supercapacitor is a single unit. Various contender electrode materials have been used so far, however, metal organic frameworks, having rich porosity and distinctive electrochemical properties can be integrated in energy storage devices to improve electrochemical performance. Herein, we have synthesized Ce-PTA-MOF from pyridine-2,4,6-tricarboxylic acid which was structurally as well as electrochemically characterized. Effects of different concentrations of KOH electrolyte on electrochemical properties of Ce-PTA-MOF electrode has been investigated using three electrodes assembly and practical applications of hybrid supercapacitor device has also been explored by fabricating it with activated carbon. The stability and capacitive-diffusive contributions of the hybrid supercapacitor has been analyzed by theoretical approach. The specific capacity, maximum energy density and power density were calculated as 115 C/g, 26.75 Wh/kg and 5760 W/kg respectively which showed efficiency of 99.2 % even after 5000 GCD cycles. High energy density and power density with extraordinary stability make Ce-PTA-MOF electrode a promising candidate for futuristic hybrid supercapacitor devices.
Açıklama
Anahtar Kelimeler
Hybrid supercapacitor, MOFs, Pyridine-2, 6-tricarboxylic acid (PTA), 3D coordination polymer, Asymmetric device
Kaynak
Journal of Energy Storage
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
88