Nonintrusive model order reduction for cross-diffusion systems

dc.authoridUzunca, Murat/0000-0001-5262-063X
dc.authoridKarasozen, Bulent/0000-0003-1037-5431
dc.authoridMulayim, Gulden/0000-0001-8952-7658
dc.contributor.authorKarasozen, Bulent
dc.contributor.authorMulayim, Gulden
dc.contributor.authorUzunca, Murat
dc.date.accessioned2025-03-23T19:41:52Z
dc.date.available2025-03-23T19:41:52Z
dc.date.issued2022
dc.departmentSinop Üniversitesi
dc.description.abstractIn this paper, we investigate tensor based nonintrusive reduced-order models (ROMs) for parametric cross-diffusion equations. The full-order model (FOM) consists of ordinary differential equations (ODEs) in matrix or tensor form resulting from finite difference discretization of the differential operators by taking the advantage of Kronecker structure. The matrix/tensor differential equations are integrated in time with the implicit-explicit (IMEX) Euler method. The reduced bases, relying on a finite sample set of parameter values, are constructed in form of a two-level approach by applying higher-order singular value decomposition (HOSVD) to the space-time snapshots in tensor form, which leads to a large amount of computational and memory savings. The nonintrusive reduced approximation for an arbitrary parameter value is obtained through tensor product of the reduced basis by the parameter dependent core tensor that contains the reduced coefficients. The reduced coefficients for new parameter values are computed with the radial basis functions. The efficiency of the proposed method is illustrated through numerical experiments for two-dimensional Schnakenberg and three-dimensional Brusselator cross-diffusion equations. The spatiotemporal patterns are accurately predicted by the reduced-order models with speedup factors of orders two and three over the full-order models. (c) 2022 Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.cnsns.2022.106734
dc.identifier.issn1007-5704
dc.identifier.issn1878-7274
dc.identifier.scopus2-s2.0-85134891574
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cnsns.2022.106734
dc.identifier.urihttps://hdl.handle.net/11486/6666
dc.identifier.volume115
dc.identifier.wosWOS:000909637500012
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250323
dc.subjectImplicit-explicit methods
dc.subjectMatrix differential equations
dc.subjectReduced-order modeling
dc.subjectTensor algebra
dc.titleNonintrusive model order reduction for cross-diffusion systems
dc.typeArticle

Files