Statistical Voronoi mean and applications to approximation theorems

dc.authoriddirik, fadime/0000-0002-9316-9037
dc.contributor.authorDemirci, Kamil
dc.contributor.authorYildiz, Sevda
dc.contributor.authorDirik, Fadime
dc.date.accessioned2025-03-23T19:47:29Z
dc.date.available2025-03-23T19:47:29Z
dc.date.issued2021
dc.departmentSinop Üniversitesi
dc.description.abstractIn this paper, we give statistical Voronoi mean which is a new statistical summability method, is not need to be regular and positive. We prove a Korovkin type approximation theorem via this method that covers many important summability methods scattered in the literature. Also, we demonstrate that our theorem is stronger than proved by earlier authors with an interesting application. Finally, we establish the rate of convergence.
dc.identifier.endpage292
dc.identifier.issn1223-6934
dc.identifier.issn2246-9958
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85126694192
dc.identifier.scopusqualityQ3
dc.identifier.startpage283
dc.identifier.urihttps://hdl.handle.net/11486/7345
dc.identifier.volume48
dc.identifier.wosWOS:000738363600008
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherUniv Craiova
dc.relation.ispartofAnnals of the University of Craiova-Mathematics and Computer Science Series
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectKorovkin theorem
dc.subjectrate of convergence
dc.subjectstatistical convergence
dc.subjectVoronoi mean
dc.titleStatistical Voronoi mean and applications to approximation theorems
dc.typeArticle

Dosyalar