Approximation via statistical relative uniform convergence of sequences of functions at a point with respect to power series method
dc.authorid | dirik, fadime/0000-0002-9316-9037 | |
dc.authorid | YILDIZ, Sevda/0000-0002-4730-2271 | |
dc.contributor.author | Demirci, Kamil | |
dc.contributor.author | Dirik, Fadime | |
dc.contributor.author | Yildiz, Sevda | |
dc.date.accessioned | 2025-03-23T19:42:19Z | |
dc.date.available | 2025-03-23T19:42:19Z | |
dc.date.issued | 2023 | |
dc.department | Sinop Üniversitesi | |
dc.description.abstract | In the present paper, we generalize the notion of P-statistical convergence and we first define the notion of P-statistical relative uniform convergence of sequences of functions at a point. We demonstrate an approximation theorem for a sequence of functions. Also, we give an example, showing that our result is strict generalization of the corresponding classical ones. In the final section, we study the rates of convergence. | |
dc.identifier.doi | 10.1007/s13370-023-01078-0 | |
dc.identifier.issn | 1012-9405 | |
dc.identifier.issn | 2190-7668 | |
dc.identifier.issue | 3 | |
dc.identifier.scopus | 2-s2.0-85163766251 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1007/s13370-023-01078-0 | |
dc.identifier.uri | https://hdl.handle.net/11486/6765 | |
dc.identifier.volume | 34 | |
dc.identifier.wos | WOS:001022424100001 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Springer Heidelberg | |
dc.relation.ispartof | Afrika Matematika | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_WOS_20250323 | |
dc.subject | Power series method | |
dc.subject | Statistical convergence | |
dc.subject | Korovkin theorem | |
dc.subject | Positive linear operator | |
dc.title | Approximation via statistical relative uniform convergence of sequences of functions at a point with respect to power series method | |
dc.type | Article |