The Borsuk-Ulam Type Theorems for Finite-Dimensional Compact Group Actions

dc.authoridOnat, Mehmet/0000-0002-6538-6624
dc.contributor.authorOnat, Mehmet
dc.date.accessioned2025-03-23T19:42:12Z
dc.date.available2025-03-23T19:42:12Z
dc.date.issued2022
dc.departmentSinop Üniversitesi
dc.description.abstractClapp and Puppe (J. Reine Angew Math 418:1-29, 1991) proved that, if G is a torus or a p-torus, X is a path-connected G-space and Y is a finite-dimensional G-CW complex without fixed points, under certain cohomological conditions on X and Y, there is no equivariant map from X to Y. Also, Biasi and Mattos (Bull Braz Math Soc New Ser 37:127-137, 2006) proved that, again under certain cohomological conditions on X and Y, there is no equivariant map from X to Y provided that G is a compact Lie group and X, Y are path-connected, paracompact, free G-spaces. In this paper, our objective is to generalize these results for the actions of finite-dimensional pro-tori and compact groups, respectively.
dc.identifier.doi10.1007/s41980-021-00581-z
dc.identifier.endpage1349
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85107174739
dc.identifier.scopusqualityQ2
dc.identifier.startpage1339
dc.identifier.urihttps://doi.org/10.1007/s41980-021-00581-z
dc.identifier.urihttps://hdl.handle.net/11486/6730
dc.identifier.volume48
dc.identifier.wosWOS:000658237500003
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorOnat, Mehmet
dc.language.isoen
dc.publisherSpringer Singapore Pte Ltd
dc.relation.ispartofBulletin of the Iranian Mathematical Society
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectThe Borsuk-Ulam theorem
dc.subjectThe equivariant cohomology
dc.subjectCompact groups
dc.titleThe Borsuk-Ulam Type Theorems for Finite-Dimensional Compact Group Actions
dc.typeArticle

Dosyalar