ADAPTIVE DISCONTINUOUS GALERKIN FINITE ELEMENTS FOR ADVECTIVE ALLEN-CAHN EQUATION

dc.contributor.authorUzunca, Murat
dc.contributor.authorSariaydin-Filibelioglu, Ayse
dc.date.accessioned2025-03-23T19:26:05Z
dc.date.available2025-03-23T19:26:05Z
dc.date.issued2021
dc.departmentSinop Üniversitesi
dc.description.abstractWe apply a space adaptive interior penalty discontinuous Galerkin method for solving advective Allen-Cahn equation with expanding and contracting velocity fields. The advective Allen-Cahn equation is first discretized in time and the resulting semi-linear elliptic PDE is solved by an adaptive algorithm using a residual-based a posteriori error estimator. The a posteriori error estimator contains additional terms due to the non-divergence-free velocity field. Numerical examples demonstrate the effectiveness and accuracy of the adaptive approach by resolving the sharp layers accurately.
dc.identifier.doi10.3934/naco.2020025
dc.identifier.endpage281
dc.identifier.issn2155-3289
dc.identifier.issn2155-3297
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85108638816
dc.identifier.scopusqualityQ1
dc.identifier.startpage269
dc.identifier.urihttps://doi.org/10.3934/naco.2020025
dc.identifier.urihttps://hdl.handle.net/11486/4628
dc.identifier.volume11
dc.identifier.wosWOS:000624875400005
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Inst Mathematical Sciences-Aims
dc.relation.ispartofNumerical Algebra Control and Optimization
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250323
dc.subjectAdvective Allen-Cahn equation
dc.subjectdiscontinuous Galerkin method
dc.subjectRothe's method
dc.subjectadaptivity
dc.titleADAPTIVE DISCONTINUOUS GALERKIN FINITE ELEMENTS FOR ADVECTIVE ALLEN-CAHN EQUATION
dc.typeArticle

Dosyalar