Production and characterization of activated carbon foams with various activation agents for electrochemical double layer capacitors (EDLCs) applications

dc.authoridemirik, mustafa/0000-0001-9489-9093
dc.authoridOZCIFCI, ZEHRA/0000-0001-8218-7136
dc.contributor.authorOzcifci, Zehra
dc.contributor.authorEmirik, Mustafa
dc.contributor.authorAkcay, Hakki Turker
dc.contributor.authorYumak, Tugrul
dc.date.accessioned2025-03-23T19:41:51Z
dc.date.available2025-03-23T19:41:51Z
dc.date.issued2024
dc.departmentSinop Üniversitesi
dc.description.abstractSucrose-based activated carbons were obtained by carbon foams with sugar and cobalt (II) nitrate as precursors, followed by using different chemical activation agents. The effect of Co(NO3)2 concentration, the carbonization temperature and the activation agent on the surface chemistry, porosity were investigated. Textural characterization and electrochemical tests were performed on the activated carbon samples (CF). The results showed that the activated carbon produced by H2SO4 and KOH at 800 degrees C had a surface area of 691 m2/g and 1125 m2/g, 89% and 80% of the sample pore structure was microporous, and specific capacitance of 8.4 F/g and 162.2 F/g at a constant current density of 250 mA/g, respectively. K2CO3-activated carbon had 918 m2/g surface area and 63% of the sample pore structure with microporous and 1.4 F/g specific capacitance, H3PO4-activated carbon and ZnCl2-activated carbon had 1833 m2/g and 1597 m2/g surface area, 53% mesoporous and 50% mesoporous, 222.4 F/g and 149.9 F/g specific capacitance respectively. The most promosing result was observed in the electrochemical storage behavior of the carbon materials with hierarchical pore structure activated with H3PO4 is associated with increasing defect zones at the edges of micro- and mesoporous morphology, resulting in a higher surface area and increased conductivity of the material.
dc.identifier.doi10.1016/j.colsurfa.2024.133851
dc.identifier.issn0927-7757
dc.identifier.issn1873-4359
dc.identifier.scopus2-s2.0-85189515156
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.colsurfa.2024.133851
dc.identifier.urihttps://hdl.handle.net/11486/6663
dc.identifier.volume690
dc.identifier.wosWOS:001222132100001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofColloids and Surfaces A-Physicochemical and Engineering Aspects
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectSupercapacitor
dc.subjectActivated carbon
dc.subjectEnergy storage
dc.subjectSucrose
dc.subjectActivation agent
dc.titleProduction and characterization of activated carbon foams with various activation agents for electrochemical double layer capacitors (EDLCs) applications
dc.typeArticle

Dosyalar