A portrait of the Higgs boson by the CMS experiment ten years after the discovery

dc.authoridLeon Holgado, Jaime/0000-0002-4156-6460
dc.authoridOchando, Christophe/0000-0002-3836-1173
dc.authoridSteggemann, Jan/0000-0003-4420-5510
dc.authoridHabibullah, Redwan/0000-0002-3161-8300
dc.authoridJaramillo Gallego, Johny/0000-0003-3885-6608
dc.authoridDozen, Candan/0000-0002-4301-634X
dc.authoridZanetti, Marco/0000-0003-4281-4582
dc.contributor.authorTumasyan, A.
dc.contributor.authorAdam, W.
dc.contributor.authorAndrejkovic, J. W.
dc.contributor.authorBergauer, T.
dc.contributor.authorChatterjee, S.
dc.contributor.authorDamanakis, K.
dc.contributor.authorDragicevic, M.
dc.date.accessioned2025-03-23T19:35:46Z
dc.date.available2025-03-23T19:35:46Z
dc.date.issued2022
dc.departmentSinop Üniversitesi
dc.description.abstractThe most up-to-date combination of results on the properties of the Higgs boson is reported, which indicate that its properties are consistent with the standard model predictions, within the precision achieved to date. In July 2012, the ATLAS and CMS collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 gigaelectronvolts. Ten years later, and with the data corresponding to the production of a 30-times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross-sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross-section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next 15 years, will help deepen our understanding of this crucial sector.
dc.identifier.doi10.1038/s41586-022-04892-x
dc.identifier.endpage+
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.issue7917
dc.identifier.pmid35788190
dc.identifier.scopusqualityQ1
dc.identifier.startpage60
dc.identifier.urihttps://doi.org/10.1038/s41586-022-04892-x
dc.identifier.urihttps://hdl.handle.net/11486/5929
dc.identifier.volume607
dc.identifier.wosWOS:000820564200001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherNature Portfolio
dc.relation.ispartofNature
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250323
dc.subjectBroken Symmetries
dc.subjectTransverse Energy
dc.subjectModel
dc.subjectRenormalization
dc.subjectParticles
dc.subjectElectrons
dc.subjectMass
dc.titleA portrait of the Higgs boson by the CMS experiment ten years after the discovery
dc.typeArticle

Dosyalar