Reduced-order modeling for Ablowitz-Ladik equation

dc.authoridKarasozen, Bulent/0000-0003-1037-5431
dc.authoridUzunca, Murat/0000-0001-5262-063X
dc.contributor.authorUzunca, Murat
dc.contributor.authorKarasoezen, Buelent
dc.date.accessioned2025-03-23T19:40:56Z
dc.date.available2025-03-23T19:40:56Z
dc.date.issued2023
dc.departmentSinop Üniversitesi
dc.description.abstractIn this paper, reduced-order models (ROMs) are constructed for the Ablowitz-Ladik equation (ALE), an integrable semi-discretization of the nonlinear Schrodinger equation (NLSE) with and without damping. Both ALEs are non-canonical conservative and dissipative Hamiltonian systems with the Poisson matrix depending quadratically on the state variables, and with quadratic Hamiltonian. The full-order solutions are obtained with the energy preserving midpoint rule for the conservative ALE and exponential midpoint rule for the dissipative ALE. The reduced-order solutions are constructed intrusively by preserving the skew-symmetric structure of the reduced non-canonical Hamiltonian system by applying proper orthogonal decomposition (POD) with the Galerkin projection. For an efficient offline-online decomposition of the ROMs, the quadratic nonlinear terms of the Poisson matrix are approximated by the discrete empirical interpolation method (DEIM). The computation of the reduced-order solutions is further accelerated by the use of tensor techniques. Preservation of the Hamiltonian and momentum for the conservative ALE, and preservation of dissipation properties of the dissipative ALE, guarantee the long-term stability of soliton solutions. & COPY; 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.matcom.2023.06.013
dc.identifier.endpage273
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.scopus2-s2.0-85163977135
dc.identifier.scopusqualityQ1
dc.identifier.startpage261
dc.identifier.urihttps://doi.org/10.1016/j.matcom.2023.06.013
dc.identifier.urihttps://hdl.handle.net/11486/6459
dc.identifier.volume213
dc.identifier.wosWOS:001034253500001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofMathematics and Computers in Simulation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250323
dc.subjectHamiltonian systems
dc.subjectNonlinear Schrodinger equation
dc.subjectProper orthogonal decomposition
dc.subjectDiscrete empirical interpolation
dc.subjectTensors
dc.titleReduced-order modeling for Ablowitz-Ladik equation
dc.typeArticle

Dosyalar