Construction of Bivariate Modified Bernstein-Chlodowsky Operators and Approximation Theorems

dc.authoridYILDIZ, Sevda/0000-0002-4730-2271
dc.contributor.authorYildiz, Sevda
dc.contributor.authorBayram, Nilay Sahin
dc.date.accessioned2025-03-23T19:48:07Z
dc.date.available2025-03-23T19:48:07Z
dc.date.issued2023
dc.departmentSinop Üniversitesi
dc.descriptionInternational E-Conference on Mathematical and Statistical Sciences (ICOMSS) -- OCT 20-22, 2022 -- ELECTR NETWORK
dc.description.abstractIn this paper, we modified Bernstein-Chlodowsky operators via weaker condition than the classical Bernstein-Chlodowsky operators' condition. We get more powerful results than classical ones. We obtain aproximation properties for these positive linear operators and their generalizations in this work. The rate of convergence of these operators is calculated by means of the modulus of continuity and Lipschitz class of the functions off of two variables. Finally, we give some concluding remarks with q-calculus.
dc.identifier.endpage71
dc.identifier.issn2035-6803
dc.identifier.scopus2-s2.0-85146356453
dc.identifier.scopusqualityQ2
dc.identifier.startpage64
dc.identifier.urihttps://hdl.handle.net/11486/7517
dc.identifier.volume16
dc.identifier.wosWOS:000998331300009
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPadova Univ Press
dc.relation.ispartofDolomites Research Notes On Approximation
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectPositive Linear-Operators
dc.subjectPower-Series Methods
dc.subjectDouble Sequences
dc.subjectConvergence
dc.titleConstruction of Bivariate Modified Bernstein-Chlodowsky Operators and Approximation Theorems
dc.typeConference Object

Dosyalar