Performance of CMS muon reconstruction from proton-proton to heavy ion collisions

dc.authoridHoryn, Lesya/0000-0002-9512-4932
dc.authoridde Leo, Ksenia/0000-0002-8908-409X
dc.authoridErdmann, Johannes/0000-0002-8073-2740
dc.authoridSavoiu, Daniel/0000-0001-6794-7475
dc.authoridRibeiro Lopes, Beatriz/0000-0003-0823-447X
dc.authoridPigazzini, Simone/0000-0002-8046-4344
dc.authoridGUZZI, LUCA/0000-0002-3086-8260
dc.contributor.authorHayrapetyan, A.
dc.contributor.authorTumasyan, A.
dc.contributor.authorAdam, W.
dc.contributor.authorAndrejkovic, J. W.
dc.contributor.authorArnold, B.
dc.contributor.authorBergauer, H.
dc.contributor.authorBergauer, T.
dc.date.accessioned2025-03-23T19:34:22Z
dc.date.available2025-03-23T19:34:22Z
dc.date.issued2024
dc.departmentSinop Üniversitesi
dc.description.abstractThe performance of muon tracking, identification, triggering, momentum resolution, and momentum scale has been studied with the CMS detector at the LHC using data collected at root s(NN) = 5.02 TeV in proton-proton (pp) and lead-lead (PbPb) collisions in 2017 and 2018, respectively, and at root s(NN) = 8.16 TeV in proton-lead (pPb) collisions in 2016. Muon efficiencies, momentum resolutions, and momentum scales are compared by focusing on how the muon reconstruction performance varies from relatively small occupancy pp collisions to the larger occupancies of pPb collisions and, finally, to the highest track multiplicity PbPb collisions. We find the efficiencies of muon tracking, identification, and triggering to be above 90% throughout most of the track multiplicity range. The momentum resolution and scale are unaffected by the detector occupancy. The excellent muon reconstruction of the CMS detector enables precision studies across all available collision systems.
dc.description.sponsorshipFWF; FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPERGS; FAPESP (Brazil); BNSF (Bulgaria); MoST; NSFC (China); CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG [MoER TK202]; Academy of Finland; MEC; CEA; CNRS/IN2P3 (France); SRNSF; BMBF; DFG; HGF (Germany); NKFIH (Hungary); DAE; DST; IPM; SFI (Ireland); INFN (Italy); NRF (Republic of Korea); MES (Latvia); MOE; UM (Malaysia); BUAP; CONACYT; UASLP-FAI (Mexico); PAEC (Pakistan); FCT (Portugal); MESTD (Serbia); PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); NSTDA; TUBITAK; DOE; NSF; Marie-Curie program; European Research Council; Horizon 2020 Grant [675440, 724704, 752730, 758316, 765710, 824093, 101115353, 101002207]; COST Action [CA16108]; Leventis Foundation; Alfred P. Sloan Foundation; Alexander von Humboldt Foundation; Science Committee [22rl-037]; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); FWO (Belgium) under the Excellence of Science -EOS [30820817]; Be.ing Municipal Science AMP; Technology Commission [Z191100007219010]; Fundamental Research Funds for the Central Universities (China); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Shota Rustaveli National Science Foundation [FR-22-985]; Deutsche Forschungsgemeinschaft (DFG) [EXC 2121, 400140256-GRK2497]; Hellenic Foundation for Research and Innovation (HFRI) [2288]; Hungarian Academy of Sciences [K 131991, K 133046, K 138136, K 143460, K 143477, K 146913, K 146914, K 147048, 2020-2.2.1-ED-2021-00181, TKP2021-NKTA-64]; Council of Science and Industrial Research, India; ICSC National Research Center for High Performance Computing - EU NexGeneration program (Italy); Latvian Council of Science; Ministry of Education and Science [2022/WK/14]; National Science Center [Opus 2021/41/B/ST2/01369, 2021/43/B/ST2/01552]; Fundacao para a Ciencia e a Tecnologia [CEECIND/01334/2018]; National Priorities Research Program by Qatar National Research Fund; ERDF a way of making Europe [MDM-2017-0765]; Programa Severo Ochoa del Principado de Asturias (Spain); National Science, Research and Innovation Fund via the Program Management Unit for Human Resources AMP; Institutional Development, Research and Innovation [B37G660013]; Kavli Foundation; Nvidia Corporation; SuperMicro Corporation; Welch Foundation [C-1845]; Weston Havens Foundation (USA)
dc.description.sponsorshipWe congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).r Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 101115353, 101002207, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee, project no. 22rl-037 (Armenia); the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the Excellence of Science -EOS -be.h project n. 30820817; the Be.ing Municipal Science & Technology Commission, No. Z191100007219010 and Fundamental Research Funds for the Central Universities (China); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Shota Rustaveli National Science Foundation, grant FR-22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy -EXC 2121 Quantum Universe-390833306, and under project number 400140256-GRK2497; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Hungarian Academy of Sciences, the New National Excellence Program -UNKP, the NKFIH research grants K 131991, K 133046, K 138136, K 143460, K 143477, K 146913, K 146914, K 147048, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; ICSC National Research Center for High Performance Computing, Big Data and Quantum Computing and FAIR-Future Artificial Intelligence Research, funded by the EU NexGeneration program (Italy); the Latvian Council of Science; the Ministry of Education and Science, project no.2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundacao para a Ciencia e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF a way of making Europe, and the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B37G660013 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).
dc.identifier.doi10.1088/1748-0221/19/09/P09012
dc.identifier.issn1748-0221
dc.identifier.issue9
dc.identifier.scopus2-s2.0-85204600465
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1088/1748-0221/19/09/P09012
dc.identifier.urihttps://hdl.handle.net/11486/5661
dc.identifier.volume19
dc.identifier.wosWOS:001381771700003
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIop Publishing Ltd
dc.relation.ispartofJournal of Instrumentation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250323
dc.subjectInstrumentation and methods for heavy-ion reactions and fission studies
dc.subjectLarge detector systems for particle and astroparticle physics
dc.subjectMuon spectrometers
dc.titlePerformance of CMS muon reconstruction from proton-proton to heavy ion collisions
dc.typeArticle

Dosyalar