Novel 3D-Printed lead-free radiation protection apron in the medical X-ray and thermal neutron energy range
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
In this study, we employed 3D printing technology to fabricate poly lactic acid (PLA) polymer samples infused with gadolinium oxide nanoparticles at additive rates of 10% and 20%. The objective was to explore their potential as radiation shielding aprons within the medical X-ray and thermal neutron energy spectrum. To facilitate comparisons, a PLA polymer sample with no additive was also produced. The homogeneity and well-defined structures of the PLA samples were observed using SEM and EDS analyses. Additionally, the excellent thermal stability of the proposed test samples was reported. In terms of gamma-ray shielding, there is a remarkable consistency between experiment, theory and simulation outcomes with a maximum discrepancy of approximately 5%. P-PLA-Gd20 sample exhibits attenuation capabilities against X-rays to a level that could serve as an alternative to lead. Additionally, the thermal and fast neutron attenuation effectiveness of the prepared samples were determined. A shielding effectiveness of 100% against thermal neutrons was achieved using a 10 mm sample thickness and the P-PLA-Gd20 sample. The findings consistently highlight the efficacy of the proposed polymer sample with a 20% gadolinium oxide nanoparticle additive, positioning it as a viable and promising alternative to traditional lead aprons.