Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at √s=13 TeV
dc.authorid | Dasu, Sridhara/0000-0001-5993-9045 | |
dc.authorid | Dharmaratna, Welathantri/0000-0002-6366-837X | |
dc.authorid | Chernyavskaya, Nadezda/0000-0002-2264-2229 | |
dc.authorid | Grunewald, Martin/0000-0002-5754-0388 | |
dc.authorid | Smith, Wesley/0000-0003-3195-0909 | |
dc.authorid | Yazgan, Efe/0000-0001-5732-7950 | |
dc.authorid | Kiminsu, Ugur/0000-0001-6940-7800 | |
dc.contributor.author | Hayrapetyan, A. | |
dc.contributor.author | Tumasyan, A. | |
dc.contributor.author | Adam, W. | |
dc.contributor.author | Andrejkovic, J. W. | |
dc.contributor.author | Bergauer, T. | |
dc.contributor.author | Chatterjee, S. | |
dc.contributor.author | Damanakis, K. | |
dc.date.accessioned | 2025-03-23T19:34:22Z | |
dc.date.available | 2025-03-23T19:34:22Z | |
dc.date.issued | 2024 | |
dc.department | Sinop Üniversitesi | |
dc.description.abstract | The identification of prompt and isolated muons, as well as muons from heavy -flavour hadron decays, is an important task. We developed two multivariate techniques to provide highly efficient identification for muons with transverse momentum greater than 10 GeV. One provides a continuous variable as an alternative to a cut -based identification selection and offers a better discrimination power against misidentified muons. The other one selects prompt and isolated muons by using isolation requirements to reduce the contamination from nonprompt muons arising in heavy-flavour hadron decays. Both algorithms are developed using 59.7 fb-1 of proton-proton collisions data at a centre-of-mass energy of root s = 13 TeV collected in 2018 with the CMS experiment at the CERN LHC. | |
dc.description.sponsorship | SC (Armenia); BMBWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPERGS (Brazil); FAPESP (Brazil); MES (Bulgaria); BNSF (Bulgaria); CERN (China); CAS (China); MoST (China); NSFC (China); MINCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER (Estonia); ERC PUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); SRNSF (Georgia); BMBF (Germany); DFG(Germany); HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); BUAP (Mexico); CINVESTAV (Mexico); CONACYT (Mexico); LNS (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES (Poland); NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI (Spain); PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE (U.S.A.); NSF (U.S.A.); Marie-Curie programme; European Research Council [675440, 724704, 752730, 758316, 765710, 824093]; COST Action [CA16108]; Leventis Foundation; Alfred P. Sloan Foundation; Alexander von Humboldt Foundation; Science Committee (Armenia) [22rl-037]; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); F.R.S.-FNRS and FWO (Belgium) [30820817]; Beijing Municipal Science & Technology Commission [Z191100007219010]; Fundamental Research Funds for the Central Universities (China); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Shota Rustaveli National Science Foundation (Georgia) [FR-22-985]; Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy [EXC 2121, 390833306, 400140256 - GRK2497]; Hellenic Foundation for Research and Innovation (HFRI) (Greece) [2288]; Hungarian Academy of Sciences; New National Excellence Program - UNKP; NKFIH (Hungary) [K 124845, K 124850, K 128713, K 128786, K 129058, K 131991, K 133046, K 138136, K 143460, K 143477, 2020-2.2.1-ED-2021-00181, TKP2021-NKTA-64]; Council of Science and Industrial Research, India; ICSC - National Research Centre for High Performance Computing, Big Data and Quantum Computing - EU NexGeneration program (Italy); Latvian Council of Science; Ministry of Education and Science [2022/WK/14]; National Science Center (Poland) [2021/41/B/ST2/01369, 2021/43/B/ST2/01552]; Fundacao para a Ciencia e a Tecnologia (Portugal) [CEECIND/01334/2018]; National Priorities Research Program by Qatar National Research Fund; MCIN/AEI; ERDF a way of making Europe; Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu [MDM-2017-0765]; Programa Severo Ochoa del Principado de Asturias (Spain); Chulalongkorn Academic into Its 2nd Century Project Advancement Project; National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (Thailand) [B05F650021]; Kavli Foundation; Nvidia Corporation; SuperMicro Corporation; Welch Foundation [C-1845]; Weston Havens Foundation (U.S.A.); STFC [ST/S000739/1, ST/X006042/1, ST/W000636/1] Funding Source: UKRI | |
dc.description.sponsorship | We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid and other centres for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie -Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee, project no. 22rl-037 (Armenia); the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the Excellence of Science - EOS - be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010 and Fundamental Research Funds for the Central Universities (China); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Shota Rustaveli National Science Foundation, grant FR -22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy - EXC 2121 Quantum Universe - 390833306, and under project number 400140256 - GRK2497; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Hungarian Academy of Sciences, the New National Excellence Program - UNKP, the NKFIH research grants K 124845, K 124850, K 128713, K 128786, K 129058, K 131991, K 133046, K 138136, K 143460, K 143477, 2020 -2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; ICSC - National Research Centre for High Performance Computing, Big Data and Quantum Computing, funded by the EU NexGeneration program (Italy); the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundacao para a Ciencia e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF a way of making Europe, and the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B05F650021 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.). | |
dc.identifier.doi | 10.1088/1748-0221/19/02/P02031 | |
dc.identifier.issn | 1748-0221 | |
dc.identifier.issue | 2 | |
dc.identifier.scopus | 2-s2.0-85186624167 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1088/1748-0221/19/02/P02031 | |
dc.identifier.uri | https://hdl.handle.net/11486/5664 | |
dc.identifier.volume | 19 | |
dc.identifier.wos | WOS:001185665800006 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Iop Publishing Ltd | |
dc.relation.ispartof | Journal of Instrumentation | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_WOS_20250323 | |
dc.subject | Muon spectrometers | |
dc.subject | Particle identification methods | |
dc.subject | Particle tracking detectors | |
dc.title | Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at √s=13 TeV | |
dc.type | Article |