Microstructure and Electrical Conductivity of ZnO Addition on the Properties of (Bi0.92Ho0.03Er0.05)2O3

dc.authoridCORUMLU, Vahit/0000-0003-2838-6497
dc.authorid/0000-0003-4453-1906
dc.authoridozturk, murat/0000-0003-1585-0449
dc.authoridSERTKOL, Murat/0000-0002-7974-2415
dc.authoridkaleli, murat/0000-0002-3290-2020
dc.contributor.authorErmis, I.
dc.contributor.authorCorumlu, V.
dc.contributor.authorSertkol, M.
dc.contributor.authorOzturk, M.
dc.contributor.authorKaleli, M.
dc.contributor.authorCetin, A.
dc.contributor.authorTuremis, M.
dc.date.accessioned2025-03-23T19:43:57Z
dc.date.available2025-03-23T19:43:57Z
dc.date.issued2016
dc.departmentSinop Üniversitesi
dc.description.abstractThe solid electrolyte is one of the most important components for a solid oxide fuel cell (SOFC). The various divalent or trivalent metal ion-doped bismuth-based materials exhibit good ionic conductivity. Therefore, these materials are used as electrolytes in the SOFC. In this paper, the samples of (Bi0.92-x Ho0.03Er0.05)(2)O-3 + (ZnO) (x) solutions with a 0 aecurrency sign x aecurrency sign 0.2 molar ratio are synthesized by the solid state reaction method. The detailed structural and electrical characterizations are investigated by using x-ray diffraction (XRD), alternating current electrochemical impedance spectroscopy, and scanning electron microscopy (SEM). The XRD patterns of all samples are indexed on a monoclinic symmetry with a P2(1)/c space group. In addition, the rietveld parameters are determined by using the FullProf software program. The impedance measurements of the samples are obtained at the 1 Hz to 20 MHz frequency range. The impedance value of the pellets increases with temperature. Based on the impedance results, it is found that the contribution of grain (bulk) is more than a grain boundary in terms of conductivity, which permits the attribution of a grain boundary. The ionic conductivity decreases with an increasing amount of Zn contribution. The value of highest electrical conductivity among all samples is calculated as 0.358 S cm(-1) at 800A degrees C for undoped (Bi0.92Ho0.03Er0.05)(2)O-3.
dc.description.sponsorshipResearch and Application Center for Hydrogen Technologies, Suleyman Demirel University, Turkey
dc.description.sponsorshipThe authors acknowledge the support provided by the Research and Application Center for Hydrogen Technologies, Suleyman Demirel University, Turkey.
dc.identifier.doi10.1007/s11664-016-4799-4
dc.identifier.endpage5866
dc.identifier.issn0361-5235
dc.identifier.issn1543-186X
dc.identifier.issue11
dc.identifier.scopus2-s2.0-84980044717
dc.identifier.scopusqualityQ2
dc.identifier.startpage5860
dc.identifier.urihttps://doi.org/10.1007/s11664-016-4799-4
dc.identifier.urihttps://hdl.handle.net/11486/6825
dc.identifier.volume45
dc.identifier.wosWOS:000385021300046
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofJournal of Electronic Materials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectFuel cell
dc.subjectsolid electrolyte
dc.subjectsolid state reaction
dc.subjectelectrical conductivity
dc.subjectactivation energy
dc.titleMicrostructure and Electrical Conductivity of ZnO Addition on the Properties of (Bi0.92Ho0.03Er0.05)2O3
dc.typeArticle

Dosyalar