Compact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted p(•)-Laplacian
[ X ]
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor & Francis Ltd
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this study, we define double weighted variable exponent Sobolev spaces W-1,W-q(.),W-p(.) (Omega, theta(0),theta) with respect to two different weight functions. Also, we investigate the basic properties of this spaces. Moreover, we discuss the existence of weak solutions for weighted Dirichlet problem of p(center dot)-Laplacian equation -div(theta(x) vertical bar del f vertical bar p(x)(-2)del f) = theta(0)(x) vertical bar f vertical bar(q(x)-2) f x is an element of Omega f = 0 x is an element of partial derivative Omega under some conditions of compact embedding involving the double weighted variable exponent Sobolev spaces.
Açıklama
Anahtar Kelimeler
Weak solution, compact embedding, p (center dot)-Laplacian, weighted variable exponent Sobolev spaces
Kaynak
Complex Variables and Elliptic Equations
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
66
Sayı
10