Compact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted p(•)-Laplacian

[ X ]

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor & Francis Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, we define double weighted variable exponent Sobolev spaces W-1,W-q(.),W-p(.) (Omega, theta(0),theta) with respect to two different weight functions. Also, we investigate the basic properties of this spaces. Moreover, we discuss the existence of weak solutions for weighted Dirichlet problem of p(center dot)-Laplacian equation -div(theta(x) vertical bar del f vertical bar p(x)(-2)del f) = theta(0)(x) vertical bar f vertical bar(q(x)-2) f x is an element of Omega f = 0 x is an element of partial derivative Omega under some conditions of compact embedding involving the double weighted variable exponent Sobolev spaces.

Açıklama

Anahtar Kelimeler

Weak solution, compact embedding, p (center dot)-Laplacian, weighted variable exponent Sobolev spaces

Kaynak

Complex Variables and Elliptic Equations

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

66

Sayı

10

Künye