A Numerical Method for a Singularly Perturbed Three-Point Boundary Value Problem

dc.authoridAMIRALIYEV, Gabil M./0000-0001-6585-7353
dc.contributor.authorCakir, Musa
dc.contributor.authorAmiraliyev, Gabil M.
dc.date.accessioned2025-03-23T19:31:00Z
dc.date.available2025-03-23T19:31:00Z
dc.date.issued2010
dc.departmentSinop Üniversitesi
dc.description.abstractThe purpose of this paper is to present a uniform finite difference method for numerical solution of nonlinear singularly perturbed convection-diffusion problem with nonlocal and third type boundary conditions. The numerical method is constructed on piecewise uniform Shishkin type mesh. The method is shown to be convergent, uniformly in the diffusion parameter epsilon, of first order in the discrete maximum norm. Some numerical experiments illustrate in practice the result of convergence proved theoretically.
dc.identifier.doi10.1155/2010/495184
dc.identifier.issn1110-757X
dc.identifier.issn1687-0042
dc.identifier.scopus2-s2.0-77955346585
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1155/2010/495184
dc.identifier.urihttps://hdl.handle.net/11486/5190
dc.identifier.wosWOS:000287761200001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherHindawi Ltd
dc.relation.ispartofJournal of Applied Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250323
dc.subjectDifference Scheme
dc.subjectPositive Solutions
dc.subjectParameter
dc.subjectMeshes
dc.titleA Numerical Method for a Singularly Perturbed Three-Point Boundary Value Problem
dc.typeArticle

Dosyalar