Modules and abelian groups with a bounded domain of injectivity

dc.authoridDemirci, Yilmaz Mehmet/0000-0003-3802-4211
dc.contributor.authorDemirci, Yilmaz Mehmet
dc.date.accessioned2025-03-23T19:31:02Z
dc.date.available2025-03-23T19:31:02Z
dc.date.issued2018
dc.departmentSinop Üniversitesi
dc.description.abstractIn this work, impecunious modules are introduced as modules whose injectivity domains are contained in the class of all pure-split modules. This notion gives a generalization of both poor modules and pure-injectively poor modules. Properties involving impecunious modules as well as examples that show the relations between impecunious modules, poor modules and pure-injectively poor modules are given. Rings over which every module is impecunious are right pure-semisimple. A commutative ring over which there is a projective semisimple impecunious module is proved to be semisimple artinian. Moreover, the characterization of impecunious abelian groups is given. It states that an abelian group M is impecunious if and only if for every prime integer p, M has a direct summand isomorphic to Z(p)(n) for some positive integer n. Consequently, an example of an impecunious abelian group which is neither poor nor pure-injectively poor is given so that the generalization defined is proper.
dc.identifier.doi10.1142/S0219498818501086
dc.identifier.issn0219-4988
dc.identifier.issn1793-6829
dc.identifier.issue6
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1142/S0219498818501086
dc.identifier.urihttps://hdl.handle.net/11486/5201
dc.identifier.volume17
dc.identifier.wosWOS:000433001200011
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.institutionauthorDemirci, Yilmaz Mehmet
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofJournal of Algebra and Its Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectPoor module
dc.subjectpure-injectively poor module
dc.subjectimpecunious module
dc.subjectpure-split module
dc.subjectimpecunious abelian group
dc.titleModules and abelian groups with a bounded domain of injectivity
dc.typeArticle

Dosyalar