Modules and abelian groups with a bounded domain of injectivity

[ X ]

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

World Scientific Publ Co Pte Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this work, impecunious modules are introduced as modules whose injectivity domains are contained in the class of all pure-split modules. This notion gives a generalization of both poor modules and pure-injectively poor modules. Properties involving impecunious modules as well as examples that show the relations between impecunious modules, poor modules and pure-injectively poor modules are given. Rings over which every module is impecunious are right pure-semisimple. A commutative ring over which there is a projective semisimple impecunious module is proved to be semisimple artinian. Moreover, the characterization of impecunious abelian groups is given. It states that an abelian group M is impecunious if and only if for every prime integer p, M has a direct summand isomorphic to Z(p)(n) for some positive integer n. Consequently, an example of an impecunious abelian group which is neither poor nor pure-injectively poor is given so that the generalization defined is proper.

Açıklama

Anahtar Kelimeler

Poor module, pure-injectively poor module, impecunious module, pure-split module, impecunious abelian group

Kaynak

Journal of Algebra and Its Applications

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

17

Sayı

6

Künye