Modüler uzaylarda istatistiksel A-toplam süreci ve Korovkin teoremi
[ X ]
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Sinop Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu doktora tezinde ilk olarak tez içerisinde kullanılacak olan bazı önemli tanımlar ve teoremler tanıtılmıştır. Bulgular bölümünün birinci kısmında tek indisli diziler için B-istatistiksel A-toplam süreci yardımıyla Korovkin tipi yaklaşım teoremleri modüler uzaylar üzerinde çalışılmış ve bu yeni yaklaşım teoremini sağlayan bir örnek verilmiştir. Bulgular bölümünün ikinci kısmında ise, çift indisli diziler için istatistiksel modüler yakınsaklık kavramı verilmiş ve bu kavram yardımıyla Korovkin tipi teoremler elde edilmiştir. Daha sonra bu teoremin koşulunu sağlayan fakat çift indisli diziler için modüler Korovkin tipi teoremin koşullarını sağlamayan bir örnek verilmiştir. Bulgular bölümünün son kısmında ise, çift indisli diziler için istatistiksel A-toplam süreci yardımıyla Korovkin tipi yaklaşım teoremleri modüler uzaylar üzerinde çalışılmış ve elde edilen sonuçların daha kuvvetli olduğunu gösteren bir örnek verilmiştir.
In this doctoral thesis, some main definitions and theorems which were used in the study have been introduced primarily. In the first part of the findings section, Korovkin type approximation theorems have been studied with the help of B-statistical A-summation process for single sequences on modular spaces and an example which satisfies this new approximation theorem has been given. In the second part of the findings section, the concept of statistical modular convergence for double sequences has been given and Korovkin type theorems have been obtained with this concept. Then, an example that provides the condition of this theorem but does not provide for the modular Korovkin type theorem for double sequences has been given. In the last part of the findings, Korovkin type approximation theorems with the help of the statistical A-summation process for double sequences have been studied on modular spaces and an example showing that the results obtained have been stronger.
In this doctoral thesis, some main definitions and theorems which were used in the study have been introduced primarily. In the first part of the findings section, Korovkin type approximation theorems have been studied with the help of B-statistical A-summation process for single sequences on modular spaces and an example which satisfies this new approximation theorem has been given. In the second part of the findings section, the concept of statistical modular convergence for double sequences has been given and Korovkin type theorems have been obtained with this concept. Then, an example that provides the condition of this theorem but does not provide for the modular Korovkin type theorem for double sequences has been given. In the last part of the findings, Korovkin type approximation theorems with the help of the statistical A-summation process for double sequences have been studied on modular spaces and an example showing that the results obtained have been stronger.
Açıklama
Anahtar Kelimeler
Matematik, Mathematics