An Application of the Bayesian Model Selection By Using Bayes Factor, Bayesian Information Criterion And Deviance Information Criterion

[ X ]

Tarih

2013

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

TÜIK

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In statistical modelling studies, due to the advanced technology and methodological developments, it is possible to construct alternative models assumed to generate the data. Therefore, the process of choosing “the best model” among available competing models appears to be one of the crucial steps that has to be included in the modelling process. In this study, Bayes factor, which is a preferred Bayesian approach to the solution of statistical model selection problem, is introduced. For the cases when analytical computation of Bayes factor is not possible, in addition to Bayesian Information Criterion (BIC), Carlin and Chib method based on Markov Chain Monte Carlo (MCMC) simulation is explained. Besides, a frequently used criteria in the recent years of model selection applications, namely Deviance Information Criterion (DIC), which has a completely different working principle than Bayes factor, is described in detail. Two models appeared in the literature as a result of an application of quantal modelling, which is an example of a semi-parametric modelling, are compared by means of Bayes factor, BIC and DIC.
Istatistiksel modelleme çalismalarinda, artan ileri teknoloji ve metodolojik gelismeler sayesinde veriyi ürettigi varsayilan alternatif modeller olusturabilmek mümkün olmaktadir. Dolayisiyla, mevcut rakip modeller arasindan “en iyi” olani seçme islemi, modelleme sürecine dahil edilmesi gereken önemli asamalardan biri olarak ortaya çikmaktadir. Bu çalismada, istatistiksel model seçimi probleminin Bayesci yaklasimla çözümünde tercih edilen Bayes faktörü tanitilmis, analitik olarak hesaplanmasinin mümkün olmadigi durumlarda kullanilabilen Bayesci Bilgi Ölçütü (BIC) yani sira Markov Zincir Monte Carlo (MCMC) simülasyonuna dayali Carlin ve Chib yöntemi açiklanmistir. Ayrica Bayes faktöründen tamamen farkli prensipte çalisan ve son yillarda model seçimi uygulamalarinda siklikla kullanilan Sapma Bilgi Ölçütü (DIC) ayrintili olarak anlatilmistir. Bir yari-parametrik modelleme örnegi olan kuantal modellemenin, literatürdeki bir uygulamasi sonucu ortaya çikan alternatif iki model Bayes faktörü, BIC ve DIC kullanilarak kiyaslanmistir.

Açıklama

Anahtar Kelimeler

Bayes factor, Carlin and Chib method, DIC, MCMC, BIC

Kaynak

Istatistik Arastirma Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

10

Sayı

2

Künye