Comparison of Missing Data Analysis Methods in Cox Proportional Hazard Models

dc.contributor.authorAlkan, Nesrin
dc.contributor.authorTerzi, Yüksel
dc.contributor.authorCengiz, M. Ali
dc.contributor.authorAlkan, B. Barış
dc.date.accessioned2014-07-11T07:02:35Z
dc.date.available2014-07-11T07:02:35Z
dc.date.issued2013
dc.description.abstractData with missing value are common in clinical studies. This study investigated to assess the effects of different missing data analysis techniques on the performance of Cox proportional hazard model. Material and Methods: In order to see how sample size and missing rate effect the missing data analysis techniques, we derived the survival data with 25, 50 and 100 sample sizes. Some elements of the survival data with different sample size were deleted in different rates under MAR (Missing at Random) assumption to generate incomplete data sets which had 5%, 10%, 20% and 40% missing value for each data. Data sets with missing values were completed by five missing data analysis techniques (complete case Analysis-CCA, mean imputation, regression imputation-REG, expectation maximization-EM algorithm, multiple imputation-MI). The new completed data sets were analyzed by Cox proportional hazard model and their results were compared with results of original data. Results: The difference between the techniques grew for increasing missing rate and while the sample size increased the methods were similar to each other. CCA was the most affected from sample size. The estimates from the methods REG, EM and MI were very similar to each other and real value. Conclusion: Multiple imputation method as impute more than one value for each missing value should be preferred instead of single imputation methods as impute only one value for each missing value.
dc.identifier.urihttps://hdl.handle.net/11486/244
dc.language.isoen
dc.publisherTürkiye Klinikleri Journal of Biostatistics
dc.relation.publicationcategoryMakale - Kategorisiz
dc.subjectMissing data analysis
dc.subjectCox proportional hazard models
dc.subjectMultiple imputation
dc.subjectKayıp veri
dc.subjectKayıp veri analizi
dc.subjectCox oransal hazard modeli
dc.subjectÇoklu değer atama
dc.subjectMissing data
dc.titleComparison of Missing Data Analysis Methods in Cox Proportional Hazard Models
dc.title.alternativeCox Oransal Hazard Modelinde Kayıp Veri Analizi Yöntemlerinin Karşılaştırılması
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Comparison of missing data analysis methods in cox proportional hazard models.pdf
Boyut:
333.84 KB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: