WEIGHTED VARIABLE EXPONENT AMALGAM SPACES W(Lp(x), Lwq)

[ X ]

Tarih

2012

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Croatian Mathematical Soc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In the present paper a new family of Wiener amalgam spaces W(L-p(x), L-w(q)) is defined, with local component which is a variable exponent Lebesgue space L-p(x)(R-n) and the global component is a weighted Lebesgue space L-w(q) (R-n). We proceed to show that these Wiener amalgam spaces are Banach function spaces. We also present new Holder-type inequalities and embeddings for these spaces. At the end of this paper we show that under some conditions the Hardy-Littlewood maximal function is not mapping the space W(L-p(x), L-w(q)) into itself.

Açıklama

Anahtar Kelimeler

Variable exponent Lebesgue space, Hardy-Littlewood maximal function, Wiener amalgam space

Kaynak

Glasnik Matematicki

WoS Q Değeri

Q3

Scopus Q Değeri

Q4

Cilt

47

Sayı

1

Künye