On the weighted variable exponent amalgam space W (Lp(x), Lmq)

dc.contributor.authorGürkanli, A. Turan
dc.contributor.authorAydin, Ismail
dc.date.accessioned2025-03-23T19:16:34Z
dc.date.available2025-03-23T19:16:34Z
dc.date.issued2014
dc.departmentSinop Üniversitesi
dc.description.abstractIn [4], a new family. W (Lp(x),Lmq) of Wiener amalgam spaces was defined and investigated some properties of these spaces, where local component is a variable exponent Lebesgue space Lp(x) (ℝ) and the global component is a weighted Lebesgue space Lqm(ℝ). This present paper is a sequel to our work [4]. In Section 2, we discuss necessary and sufficient conditions for the equality. W (Lp(x),Lmq)=Lq(ℝ). Later we give some characterization of Wiener amalgam space. W (Lp(x),Lmq). In Section 3 we define the Wiener amalgam space. W (FLp(x),Lmq) and investigate some properties of this space, where. FLp(x) is the image of Lp(x) under the Fourier transform. In Section 4, we discuss boundedness of the Hardy-Littlewood maximal operator between some Wiener amalgam spaces. © 2014 Wuhan Institute of Physics and Mathematics.
dc.identifier.doi10.1016/S0252-9602(14)60072-2
dc.identifier.endpage1110
dc.identifier.issn0252-9602
dc.identifier.issue4
dc.identifier.scopus2-s2.0-84901239390
dc.identifier.scopusqualityQ2
dc.identifier.startpage1098
dc.identifier.urihttps://doi.org/10.1016/S0252-9602(14)60072-2
dc.identifier.urihttps://hdl.handle.net/11486/4148
dc.identifier.volume34
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofActa Mathematica Scientia
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20250323
dc.subjectVariable exponent Lebesgue
dc.subjectWeighted Lebesgue space
dc.titleOn the weighted variable exponent amalgam space W (Lp(x), Lmq)
dc.typeArticle

Dosyalar