Approximation theorems using the method of $\mathcal{I}_{2}$-statistical convergence

dc.contributor.authorDirik, Fadime
dc.contributor.authorDemirci, Kamil
dc.contributor.authorYildiz, Sevda
dc.date.accessioned2025-03-23T18:53:03Z
dc.date.available2025-03-23T18:53:03Z
dc.date.issued2024
dc.departmentSinop Üniversitesi
dc.description.abstractIn this study, we utilize the concept of $\mathcal{I}$-statistical convergence for double sequences to establish a general approximation theorem of Korovkin-type for double sequences of positive linear operators $(PLOs)$ mapping from $H_{\omega }\left( X\right) $ to $C_{B}\left( X\right) $ where $% X=\left
dc.description.abstract0,\infty \right) \times \left 0,\infty \right) .$ We then present an example that demonstrates the applicability of our new main result in cases where classical and statistical approaches are not sufficient. Furthermore, we compute the convergence rate of these double sequences of positive linear operators by employing the modulus of smoothness.
dc.identifier.doi10.54559/jauist.1581390
dc.identifier.doihttps://doi.org/10.54559/jauist.1581390
dc.identifier.endpage87
dc.identifier.issn2717-8900
dc.identifier.issue2
dc.identifier.startpage79
dc.identifier.urihttps://hdl.handle.net/11486/2097
dc.identifier.volume5
dc.language.isoen
dc.publisherAmasya University
dc.relation.ispartofJournal of Amasya University the Institute of Sciences and Technology
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_DergiPark_20250323
dc.subjectDouble sequence
dc.subjectstatistical convergence
dc.subject$\mathcal{I}_{2}$-statistical convergence
dc.subjectKorovkin theorem
dc.subjectthe Bleimann Butzer and Hahn operator
dc.titleApproximation theorems using the method of $\mathcal{I}_{2}$-statistical convergence
dc.typeArticle

Dosyalar