Statistically Relatively A-summability of Convergence of Double Sequences of Positive Linear Operators

dc.contributor.authorDirik, Fadime
dc.contributor.authorSahin, Pinar Okçu
dc.date.accessioned2025-03-23T18:53:04Z
dc.date.available2025-03-23T18:53:04Z
dc.date.issued2017
dc.departmentSinop Üniversitesi
dc.description.abstractIn this paper, we introduce the concept of statistically relatively A-summability. Based upon this definition and A-statistically relatively uniform convergence for double sequences of functions, we prove a Korovkin-type approximation theorem and give a strong example. Also, we study the rates of statistical relatively A-summability of positive linear operators.
dc.identifier.endpage66
dc.identifier.issn2536-4383
dc.identifier.issn2564-7873
dc.identifier.issue1
dc.identifier.startpage59
dc.identifier.urihttps://hdl.handle.net/11486/2109
dc.identifier.volume2
dc.language.isoen
dc.publisherSinop Üniversitesi
dc.relation.ispartofSinop Üniversitesi Fen Bilimleri Dergisi
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_DergiPark_20250323
dc.subjectStatistical relatively convergence
dc.subjectstatistical A-summability
dc.subjectthe Korovkin theorem
dc.subjectpositive linear operatör
dc.titleStatistically Relatively A-summability of Convergence of Double Sequences of Positive Linear Operators
dc.typeArticle

Dosyalar