Ergimiş tuz reaktörlerinde radyasyon zırhlama analizi
[ X ]
Tarih
2025
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Sinop Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Nükleer enerji teknolojisinde yenilikçi bir yaklaşım sunarak çeşitli avantajlarıyla öne çıkan Erimiş Tuz Reaktörleri (Molten Salt Reactor - MSR) güvenli ve sürdürülebilir nükleer enerjinin gelecekteki potansiyel seçeneklerinden bir tanesidir. MSR'ler termal nötron spektrumunda çalıştığı bilinirken bazı tasarımları hızlı nötron spektrumunda da çalışabilmektedir. Bu kapsamda MSR'lerde radyasyon zırhlama tasarımı, reaktörün yakıt çevrimi, çalışma sıcaklığı ve nötron spektrumu gibi değişkenlere bağlı olarak optimize edilmelidir. Bu tez kapsamında, hali hazırda tasarımı yapılmış 50 kWth güce sahip bir mikro-MSR için önerilen katmanlı zırhlama modelinin analizi ve radyasyon hasarının incelenmesi amaçlanmıştır. Dokuz katmandan oluşan mikro reaktörün zırhlama tasarımında SS316 ve B4C çıkartılarak yerlerine sırasıyla SS304 ve HN (Hastelloy N) yerleştirilmiştir. Hem literatürde konsepti verilen reaktör için hem de önerilen yeni malzemeler kullanılarak tasarlanan reaktör için radyasyon zırhlama analizleri gerçekleştirilmiştir. Bu doğrultuda, ilk aşamada Serpent Monte Carlo simülasyon programı kullanılarak reaktör modellenmiş ve simüle edilmiştir. Simülasyon sonucunda reaktörün çalışması ile açığa çıkan nötron akıları belirlenmiş ve diğer simülasyon paketleri için girdi olarak kaydedilmiştir. GEANT4 ve FLUKA programları kullanılarak nötronların reaktör zırh katmanları ile etkileşimleri ikincil radyasyonlar da hesaba katılarak incelenmiştir. Nötron analizine ek olarak zırh tasarımının gama radyasyonu zırhlama açısından kabiliyeti GEANT4, FLUKA ve XCOM kodları aracığıyla belirlenmiştir. Tez kapsamında önerilen SS304 ve HN'nin SS316 ve B4C'ye göre gama ve nötron radyasyonu açısından daha iyi zırh malzemeleri oldukları hesaplamalar sonucunda görülmüştür.
Molten Salt Reactors (MSRs), which offer an innovative approach to nuclear energy technology and stand out due to their various advantages, are one of the potential future options for safe and sustainable nuclear energy. While MSRs are known to operate within the thermal neutron spectrum, certain designs are also capable of functioning in the fast neutron spectrum. In this context, the radiation shielding design in MSRs should be optimized based on variables such as the reactor's fuel cycle, operating temperature, and neutron spectrum. This thesis aims to analyze the proposed layered shielding model and examine radiation damage for a 50 kWth micro-MSR, for which the design has already been established. In the shielding design of the nine-layer micro-reactor, SS316 and B4C were replaced with SS304 and Hastelloy N (HN), respectively. Radiation shielding analyses were performed for both the reactor, as conceptualized in the literature, and the reactor designed using the proposed new materials. To this end, the reactor was modeled and simulated using the Serpent Monte Carlo simulation program in the initial phase. The neutron fluxes produced during the reactor's operation were determined from the simulation results and recorded as inputs for other simulation packages. The interactions of neutrons with the reactor's shielding layers, including secondary radiation, were analyzed using the GEANT4 and FLUKA programs. In addition to neutron analysis, the effectiveness of the shielding design in terms of gamma radiation was evaluated using the GEANT4, FLUKA, and XCOM codes. The results of the calculations demonstrated that SS304 and Hastelloy N provide superior shielding materials for both gamma and neutron radiation compared to SS316 and B4C.
Molten Salt Reactors (MSRs), which offer an innovative approach to nuclear energy technology and stand out due to their various advantages, are one of the potential future options for safe and sustainable nuclear energy. While MSRs are known to operate within the thermal neutron spectrum, certain designs are also capable of functioning in the fast neutron spectrum. In this context, the radiation shielding design in MSRs should be optimized based on variables such as the reactor's fuel cycle, operating temperature, and neutron spectrum. This thesis aims to analyze the proposed layered shielding model and examine radiation damage for a 50 kWth micro-MSR, for which the design has already been established. In the shielding design of the nine-layer micro-reactor, SS316 and B4C were replaced with SS304 and Hastelloy N (HN), respectively. Radiation shielding analyses were performed for both the reactor, as conceptualized in the literature, and the reactor designed using the proposed new materials. To this end, the reactor was modeled and simulated using the Serpent Monte Carlo simulation program in the initial phase. The neutron fluxes produced during the reactor's operation were determined from the simulation results and recorded as inputs for other simulation packages. The interactions of neutrons with the reactor's shielding layers, including secondary radiation, were analyzed using the GEANT4 and FLUKA programs. In addition to neutron analysis, the effectiveness of the shielding design in terms of gamma radiation was evaluated using the GEANT4, FLUKA, and XCOM codes. The results of the calculations demonstrated that SS304 and Hastelloy N provide superior shielding materials for both gamma and neutron radiation compared to SS316 and B4C.
Açıklama
Anahtar Kelimeler
Nükleer Mühendislik, Nuclear Engineering