Approximation in triangular statistical sense to B-continuous functions by positive linear operators

dc.contributor.authorDemirci, Kamil
dc.contributor.authorDirik, Fadime
dc.contributor.authorOkçu, Pınar
dc.date.accessioned2025-03-23T19:17:49Z
dc.date.available2025-03-23T19:17:49Z
dc.date.issued2017
dc.departmentSinop Üniversitesi
dc.description.abstractThe main object of this paper is to prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on the space of all real valued B-continuous functions on a compact subset of the real line using a new type of statistical convergence of double sequences called triangular-A-statistical convergence for double real sequences. We give an illustrative example in support of our result. Finally, we investigate a rates of triangular-A-statistical convergence of positive linear operators. © 2018, Universitatii Al.I.Cuza din Iasi. All rights reserved.
dc.identifier.issn1221-8421
dc.identifier.issueF3
dc.identifier.scopus2-s2.0-85051343516
dc.identifier.scopusqualityQ4
dc.identifier.urihttps://hdl.handle.net/11486/4438
dc.identifier.volume63
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSciendo
dc.relation.ispartofAnalele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20250323
dc.subjectB-continuity
dc.subjectRegularity for double sequences
dc.subjectThe Korovkin theorem
dc.subjectTriangular A-statistical convergence for double sequences
dc.titleApproximation in triangular statistical sense to B-continuous functions by positive linear operators
dc.typeArticle

Dosyalar