ON THE WEIGHTED VARIABLE EXPONENT AMALGAM SPACE W(Lp(x) , Lmq)

dc.contributor.authorGurkanli, A. Turan
dc.contributor.authorAydin, Ismail
dc.date.accessioned2025-03-23T19:48:19Z
dc.date.available2025-03-23T19:48:19Z
dc.date.issued2014
dc.departmentSinop Üniversitesi
dc.description.abstractIn [4], a new family W(L-p(x), L-m(q))of Wiener amalgam spaces was defined and investigated some properties of these spaces, where local component is a variable exponent Lebesgue space L-p(x) (R) and the global component is a weighted Lebesgue space L-m(q) (R). This present paper is a sequel to our work [4]. In Section 2, we discuss necessary and sufficient conditions for the equality W (L-p(x), L-m(q)) = L-q (R). Later we give some characterization of Wiener amalgam space W (L-p(x), L-m(q)). In Section 3 we define the Wiener amalgam space W (FLp(x), L-m(q)) and investigate some properties of this space, where FLp(x) is the image of L-p(x)) under the Fourier transform. In Section 4, we discuss boundedness of the Hardy-Littlewood maximal operator between some Wiener amalgam spaces.
dc.identifier.endpage1110
dc.identifier.issn0252-9602
dc.identifier.issn1572-9087
dc.identifier.issue4
dc.identifier.scopusqualityQ2
dc.identifier.startpage1098
dc.identifier.urihttps://hdl.handle.net/11486/7544
dc.identifier.volume34
dc.identifier.wosWOS:000339413000010
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofActa Mathematica Scientia
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250323
dc.subjectweighted Lebesgue space
dc.subjectvariable exponent Lebesgue
dc.titleON THE WEIGHTED VARIABLE EXPONENT AMALGAM SPACE W(Lp(x) , Lmq)
dc.typeArticle

Dosyalar