ON THE WEIGHTED VARIABLE EXPONENT AMALGAM SPACE W(Lp(x) , Lmq)
dc.contributor.author | Gurkanli, A. Turan | |
dc.contributor.author | Aydin, Ismail | |
dc.date.accessioned | 2025-03-23T19:48:19Z | |
dc.date.available | 2025-03-23T19:48:19Z | |
dc.date.issued | 2014 | |
dc.department | Sinop Üniversitesi | |
dc.description.abstract | In [4], a new family W(L-p(x), L-m(q))of Wiener amalgam spaces was defined and investigated some properties of these spaces, where local component is a variable exponent Lebesgue space L-p(x) (R) and the global component is a weighted Lebesgue space L-m(q) (R). This present paper is a sequel to our work [4]. In Section 2, we discuss necessary and sufficient conditions for the equality W (L-p(x), L-m(q)) = L-q (R). Later we give some characterization of Wiener amalgam space W (L-p(x), L-m(q)). In Section 3 we define the Wiener amalgam space W (FLp(x), L-m(q)) and investigate some properties of this space, where FLp(x) is the image of L-p(x)) under the Fourier transform. In Section 4, we discuss boundedness of the Hardy-Littlewood maximal operator between some Wiener amalgam spaces. | |
dc.identifier.endpage | 1110 | |
dc.identifier.issn | 0252-9602 | |
dc.identifier.issn | 1572-9087 | |
dc.identifier.issue | 4 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1098 | |
dc.identifier.uri | https://hdl.handle.net/11486/7544 | |
dc.identifier.volume | 34 | |
dc.identifier.wos | WOS:000339413000010 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.ispartof | Acta Mathematica Scientia | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_WOS_20250323 | |
dc.subject | weighted Lebesgue space | |
dc.subject | variable exponent Lebesgue | |
dc.title | ON THE WEIGHTED VARIABLE EXPONENT AMALGAM SPACE W(Lp(x) , Lmq) | |
dc.type | Article |