Weighted variable exponent amalgam spaces W(LP(X),LQW)
[ X ]
Tarih
2012
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Croatian Mathematical Society
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In the present paper a new family of Wiener amalgam spaces W(LP(X),LQW) is defined, with local component which is a variable exponent Lebesgue space LP(X)(ℝn) and the global component is a weighted Lebesgue space LQW(ℝn). We proceed to show that these Wiener amalgam spaces are Banach function spaces. We also present new Hölder-type inequalities and embeddings for these spaces. At the end of this paper we show that under some conditions the Hardy-Littlewood maximal function is not mapping the space W(LP(X),LQW) into itself.
Açıklama
Anahtar Kelimeler
Hardy-Littlewood maximal function, Variable exponent Lebesgue space, Wiener amalgam space
Kaynak
Glasnik Matematicki
WoS Q Değeri
Scopus Q Değeri
Q4
Cilt
47
Sayı
1