Weighted variable exponent amalgam spaces W(LP(X),LQW)

[ X ]

Tarih

2012

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Croatian Mathematical Society

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In the present paper a new family of Wiener amalgam spaces W(LP(X),LQW) is defined, with local component which is a variable exponent Lebesgue space LP(X)(ℝn) and the global component is a weighted Lebesgue space LQW(ℝn). We proceed to show that these Wiener amalgam spaces are Banach function spaces. We also present new Hölder-type inequalities and embeddings for these spaces. At the end of this paper we show that under some conditions the Hardy-Littlewood maximal function is not mapping the space W(LP(X),LQW) into itself.

Açıklama

Anahtar Kelimeler

Hardy-Littlewood maximal function, Variable exponent Lebesgue space, Wiener amalgam space

Kaynak

Glasnik Matematicki

WoS Q Değeri

Scopus Q Değeri

Q4

Cilt

47

Sayı

1

Künye