THE NEW ITERATION PROCESS FOR MULTIVALUED NONEXPANSIVE MAPPING IN KOHLENBACH HYPERBOLIC SPACE

dc.contributor.authorKaplan Özekes, Makbule
dc.date.accessioned2025-03-23T19:17:45Z
dc.date.available2025-03-23T19:17:45Z
dc.date.issued2021
dc.departmentSinop Üniversitesi
dc.description.abstractIn this paper, we introduce an iteration scheme for multivalued mappings in Kohlenbach hyperbolic spaces and establish the strong and ∆-convergence theorems for approximating a fixed point of nonexpansive multivalued mapping with this iterative process under appropriate condition in Kohlenbach hyperbolic space. Our results generalize some previous works results in literature. © 2021, Erhan SET. All rights reserved.
dc.identifier.endpage41
dc.identifier.issn2602-4187
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85209883917
dc.identifier.scopusqualityN/A
dc.identifier.startpage33
dc.identifier.urihttps://hdl.handle.net/11486/4418
dc.identifier.volume5
dc.indekslendigikaynakScopus
dc.institutionauthorKaplan Özekes, Makbule
dc.language.isoen
dc.publisherErhan SET
dc.relation.ispartofTurkish Journal of Inequalities
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20250323
dc.subjecthyperbolic space
dc.subjectMultivalued nonexpansive mappings
dc.subjectstrong and ∆-convergence
dc.titleTHE NEW ITERATION PROCESS FOR MULTIVALUED NONEXPANSIVE MAPPING IN KOHLENBACH HYPERBOLIC SPACE
dc.typeArticle

Dosyalar