Yazar "Gurkanli, A. Turan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe ON THE WEIGHTED VARIABLE EXPONENT AMALGAM SPACE W(Lp(x) , Lmq)(Springer, 2014) Gurkanli, A. Turan; Aydin, IsmailIn [4], a new family W(L-p(x), L-m(q))of Wiener amalgam spaces was defined and investigated some properties of these spaces, where local component is a variable exponent Lebesgue space L-p(x) (R) and the global component is a weighted Lebesgue space L-m(q) (R). This present paper is a sequel to our work [4]. In Section 2, we discuss necessary and sufficient conditions for the equality W (L-p(x), L-m(q)) = L-q (R). Later we give some characterization of Wiener amalgam space W (L-p(x), L-m(q)). In Section 3 we define the Wiener amalgam space W (FLp(x), L-m(q)) and investigate some properties of this space, where FLp(x) is the image of L-p(x)) under the Fourier transform. In Section 4, we discuss boundedness of the Hardy-Littlewood maximal operator between some Wiener amalgam spaces.Öğe WEIGHTED VARIABLE EXPONENT AMALGAM SPACES W(Lp(x), Lwq)(Croatian Mathematical Soc, 2012) Aydin, Ismail; Gurkanli, A. TuranIn the present paper a new family of Wiener amalgam spaces W(L-p(x), L-w(q)) is defined, with local component which is a variable exponent Lebesgue space L-p(x)(R-n) and the global component is a weighted Lebesgue space L-w(q) (R-n). We proceed to show that these Wiener amalgam spaces are Banach function spaces. We also present new Holder-type inequalities and embeddings for these spaces. At the end of this paper we show that under some conditions the Hardy-Littlewood maximal function is not mapping the space W(L-p(x), L-w(q)) into itself.