Yazar "Eyo, Etim" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Deformation Analysis Based on Designed Experiments and Kalman Filter(Croatian Geodetic Soc, 2014) Eyo, Etim; Bayrak, Temel; Musa, Tajul; Onuigbo, Ifeanyi; Kuta, Abdullahi; Odumosu, JosephThis paper is focused on the deformation monitoring of survey control points in the Gidan Kwano main campus, Federal University of Technology, Minna, Nigeria. The main objectives are to develop and test a kinematic deformation analysis model using simulated GPS test data. RTK GPS was the main equipment deployed for the monitoring. The kinematic deformation analysis model developed for this study was based on Kalman filtering technique. In order to verify the developed kinematic model, designed experiments, with artificially introduced deformations, were performed to test centimetre-level horizontal movements on four points (GPS 01, GPS 08, GPS 09 and GPS 12). The developed kinematic model was used to determine six unknown parameters of movements, namely position displacements (dx, dy), velocities (Vx, Vy) and accelerations (ax, ay). The results of the computed movement parameters of the control points show that the introduced deformations were detected by the kinematic deformation model. The model also detected that there was no deformation introduced to point GPS 09. Some of the discrepancies in the computed results can be attributed to centring errors during observations.Öğe DEVELOPMENT OF AN ALTERNATIVE LOW-COST LANDSLIDE MONITORING METHOD USING DATA FROM TUSAGA-AKTIF GNSS NETWORK(Univ Federal Parana, Centro Politecnico, 2015) Bayrak, Temel; Eyo, Etim; Basoglu, Nesat; Musa, Tajul; Akpee, DinebariThe main objectives of this paper are to develop a kinematic deformation analysis model for landslides using Kalman filtering procedures; and to utilise the observations from TUSAGA-Aktif GNSS Network in Turkey to determine the velocity fields of a landslide study area in the Eastern Black Sea Region of Turkey. Thirty five (35) points were established for the determination of 3D time dependent velocities of the landslides study area. Point displacements and velocities were determined by single point kinematic model to perform 3-D statistical analysis, and to assess the significance of point displacements and velocities using three periodic observations from TUSAGA-Aktif Network. The determined velocities were used to generate the velocity fields of the landslide area for three epochs using Geographic Information System (GIS). The results obtained indicate that almost all the monitored points showed significant movements, with varying magnitudes of velocities. The directions of movement of the 35 monitored points were also determined. The results show that the dominant trends of landslide movements in the study area are in the northwest and northeast directions. These results are in agreement with the previous results obtained in the same study area about ten years ago.Öğe Kinematic Analysis of Small and Slow-Moving Landslides Using Pleiades-1 Satellite Data(Ieee-Inst Electrical Electronics Engineers Inc, 2023) Eyo, Etim; Hashim, Mazlan; Reba, Mohd Nadzri Md; Bayrak, Temel; Shahabi, HimanAlthough they may have small velocity values, small slope failures can cause damage to facilities such as roads and pipelines. The main goals of this paper are to detect and map, and quantify the kinematics of small and slow-moving landslides in Kutlugun, Northeastern Turkey. Object-based image analysis (OBIA) and rule-based classification techniques were utilized to detect and map the small and slow-moving landslides. The horizontal displacement of the landslides was investigated using the sub-pixel image correlation method, Cosi-Corr software, and Pleiades-1 images. Kalman filtering method and Real-Time Kinematics-Global Positioning System (RTK-GPS) observations were utilized to formulate a kinematic analysis model for the landslides. A total of 123 small landslides covering an area of approximately 413.332 m(2) were detected in the study area. The displacements determined by image correlation compare very well with the RTK-GPS measurements, with a maximum deviation of 0.86 mm. The movement rate of the small landslide from RTK-GPS results ranged from 0.80- 8.28 mm during the six-month monitoring period. The average displacement value for all the monitoring points is 9.88 mm, while the average movement rate is 3.11 mm during the monitoring period. Compared to the deformation obtained using only the RTK-GPS measurements, the optical image correlation produced a more coherent deformation pattern and more detailed information on the extent and distribution of deformation. The results of the kinematic analysis suggest that the entire body of the small landslide moved slowly during the monitoring period.