Weakly distributive modules. Applications to supplement submodules

dc.contributor.authorBüyükaşık, Engin
dc.contributor.authorDemirci, Yılmaz Mehmet
dc.date.accessioned2014-08-14T07:08:06Z
dc.date.available2014-08-14T07:08:06Z
dc.date.issued2010
dc.description.abstractIn this paper, we define and study weakly distributive modules as a proper generalization of distributive modules.We prove that, weakly distributive supplemented modules are amply supplemented. In a weakly distributive supplemented module every submodule has a unique coclosure. This generalizes a result of Ganesan and Vanaja. We prove that ?-projective duo modules, in particular commutative rings, are weakly distributive. Using this result we obtain that in a commutative ring supplements are unique. This generalizes a result of Camillo and Lima. We also prove that any weakly distributive ?-supplemented module is quasi-discrete.
dc.identifier.citationBüyükaşık E., Demirci, Y. M., "Weakly distributive modules. Applications to supplement submodules". Proceedings Of The Indian Academy Of Sciences-Mathematical Sciences. Vol. 120, No. 5, November 2010, pp. 525–534.
dc.identifier.issn0253-4142
dc.identifier.urihttp://www.ias.ac.in/mathsci/vol120/nov2010/pm-09-00229.PDF
dc.identifier.urihttps://hdl.handle.net/11486/316
dc.language.isoen
dc.publisherProceedings Of The Indian Academy Of Sciences-Mathematical Sciences
dc.relation.publicationcategoryMakale - Kategorisiz
dc.subjectDistributive module
dc.subjectSupplement submodule
dc.titleWeakly distributive modules. Applications to supplement submodules
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Weakly distributive modules. Applications to supplement submodules.pdf
Boyut:
123.16 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: