Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Yuksek, Haydar" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Platinum nanoparticles involved on nitrogen and sulfur-doped nanomaterial as fuel cell electrode
    (Springer, 2017) Saral, Hasan; Akyildirim, Onur; Yuksek, Haydar; Eren, Tanju
    A fuel cell is an electrochemical cell that converts a source fuel into an electrical current. It generates electricity inside a cell through reactions between a fuel and an oxidant, triggered in the presence of an electrolyte. Fuel cells have been attracting more and more attention in recent decades due to high-energy demands, fossil fuel depletions, and environmental pollution throughout world. In this study, a facile and cost-effective catalysts have been developed on platinum nanoparticles (PtNPs) supported on nitrogen and sulfur-doped nanomaterial (PtNPs-NS). The successful synthesis of nanomaterials and the prepared glassy carbon electrode (GCE) surfaces were confirmed by transmission electron microscope (TEM), X-ray photo electron spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. According to TEM images, the average particle sizes of PtNPs were found to be approximately 20-25 nm. The effective surface areas of NS/GCE and PtNPs-NS/GCE were calculated to be 105 and 518 cm(2)/mg, respectively. The PtNPs-NS/GCE also exhibited a higher peak current for methanol oxidation than those of comparable GCE and NS/GCE, providing evidence for its higher electro-catalytic activity.
  • [ X ]
    Öğe
    Platinum nanoparticles supported on nitrogen and sulfur-doped reduced graphene oxide nanomaterial as highly active electrocatalysts for methanol oxidation
    (Springer, 2016) Akyildirim, Onur; Yuksek, Haydar; Saral, Hasan; Ermis, Ismail; Eren, Tanju; Yola, Mehmet Lutfi
    A fuel cell is an electrochemical cell that converts a source fuel into an electrical current. It generates electricity inside a cell through reactions between a fuel and an oxidant, triggered in the presence of an electrolyte. Fuel cells have been attracting more and more attention in recent decades due to high-energy demands, fossil fuel depletions and environmental pollution throughout world. In this study, a facile and cost-effective catalysts have been developed on platinum nanoparticles (PtNPs) supported on nitrogen and sulfur-doped reduced graphene oxide (NSrGO). The successful synthesis of nanomaterials and the prepared glassy carbon electrode (GCE) surfaces were confirmed by transmission electron microscope (TEM), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS). According to TEM images, the average particle sizes of PtNPs were found to be approximately 15-20 nm. The effective surface areas (ESA) of NSrGO/GCE and PtNPs/NSrGO/GCE were calculated to be 148 and 469 cm(2)/mg, respectively. The PtNPs/NSrGO/GCE also exhibited a higher peak current for methanol oxidation than those of comparable GCE and NSrGO/GCE, providing evidence for its higher electro-catalytic activity.

| Sinop Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Sinop, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim